

PORT OF GERALDTON MAINTENANCE DREDGE PROJECT 2021: Baseline Sediment Assessment

Prepared by

Understanding the environment in which we operate

Purpose

In accordance with the National Assessment Guidelines for Dredging (NAGD) 2009, MWPA engaged O2 Marine to conduct an assessment of the sediments within the Geraldton commercial harbour and shipping channel. This report provides a summary of the associated field sampling program and investigation of sediments which have accumulated over time. The sediment quality at each site was compared with guidelines values as set out in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018).

Importance

The assessment classified sediments as:

- 'Probably Clean' being channel sediments;
- 'Probably Contaminated' being berth pocket sediments; and
- 'Suspect' sediments which was applied to the remaining harbour sediments.

These classifications then informed MWPA's decisions for managing and placing dredge material to ensure that any contamination was appropriately managed.

Outcomes

The assessment resulted in the following recommendations:

- Harbour sediments were suitable for placement onshore within the Berth 7 Reclamation area, and
- Clean channel sediments were appropriate for beneficial uses such as nearshore placement within the marine environment.

These recommendations were consider in the Beneficial Use Assessment and shaped the design of the maintenance dredge program.

Linkages

The assessment characterised the following aspects of the sediment:

- Particle Size;
- Presence of Acid Sulfate Soils;
- Metals and Metalloid content; and
- Nutrient levels.

The assessment was a key input to the following studies and plans:

- Beneficial Re-Use Options Assessment;
- Environmental Impact Assessment;
- Dredging and Dredge Plume Hydro-graphic Modelling; and
- Dredged Environmental Management Plans.

Geraldton Port Baseline Sediment Assessment - 2019-2021

SAP Implementation Report

CLIENT:Midwest Ports AuthoritySTATUS:Rev 2REPORT No.:R190125ISSUE DATE:12 August 2021

Important Note

This report and all its components (including images, audio, video, text) is copyright. Apart from fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior written permission of O2 Marine.

This report has been prepared for the sole use of the **Midwest Ports Authority** (herein, 'the client'), for a specific site (herein 'the site', the specific purpose specified in Section 1 of this report (herein 'the purpose'). This report is strictly limited for use by the client, to the purpose and site and may not be used for any other purposes.

Third parties, excluding regulatory agencies assessing an application in relation to the purpose, may not rely on this report. O2 Marine waives all liability to any third-party loss, damage, liability or claim arising out of or incidental to a third-party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

O2 Marine waives all responsibility for loss or damage where the accuracy and effectiveness of information provided by the Client or other third parties was inaccurate or not up to date and was relied upon, wholly or in part in reporting.

WA Marine Pty Ltd t/as O2 Marine ACN 168 014 819 Originating Office – Southwest Suite 5, 18 Griffin Drive, Dunsborough WA 6281 T 1300 739 447 | info@o2marine.com.au

Version Register

Version	Status	Author	Reviewer	Change from Previous Version	Authorised for Release (signed and dated)
Rev A	Draft	R Stevens	T Hurley	NA	NA
Rev B	Draft	R Stevens	K Reynolds C Monti	Internal review comments addressed	NA
Rev 0	Final	R Stevens			C Lane 14/11/2019
Rev 1	Final	R Stevens	C Lane	Updated to include additional sampling undertaken for Elutriate TBT assessment	C Lane 25/03/2020
Rev 2	Final	R Stevens	K Reynolds	Updated to include additional sampling for increased dredge volumes, incorporate nearshore placement area and refined CoPC.	R Stevens 12/08/2021

Transmission Register

Controlled copies of this document are issued to the persons/companies listed below. Any copy of this report held by persons not listed in this register is deemed uncontrolled. Updated versions of this report if issued will be released to all parties listed below via the email address listed.

Name	Email Address
Kylie Reynolds	Kylie.reynolds@midwestports.com.au
Caitlin Monti	Caitlin.monti@midwestports.com.au

Executive Summary

The Port of Geraldton is situated on the central coast of Western Australia, approximately 430 km north of Perth. The Port consists of seven bulk loading berths (commercial harbour), tug basin and jetties as well as a fishing boat harbour. Facilities are managed by the Midwest Ports Authority (MWPA) and have been servicing the Midwest as the major seaport of the region since 1840. The Port is responsible for the handling and loading of a range of materials including, but not limited to, a variety of metal ores and concentrates that may contain potential environmental contaminants.

Recent hydrographic surveys undertaken at Geraldton Port indicated ~82,385 m³ of surficial sediment have accumulated within the inner harbour and navigation channel. Accumulated sediments are beginning to reduce available draft and require removal to continue safe navigation for vessels entering, loading and exiting the harbour. The early phase of planning by the MWPA involves investigating options to carry out maintenance dredging works to return the channel and harbour to the original designed depths, thus ensuring the safe navigability and continued use of the Port.

A Sampling and Analysis Plan (SAP, O2M 2019) has been developed in accordance with the National Assessment Guidelines for Dredging (NAGD) 2009. This report provides a summary of the associated field sampling program and investigation of sediments which have accumulated within the harbour and navigational channel. The concentration of potential contaminants in sediments detected at each site were compared to the sediment Default Guidelines Values (DGV), and waters were compared to the water DGVs for the 90%, 95% and 99% Species Protection Levels (SPL) published in ANZG (2018). In accordance with the decision tree framework for applying the DGV values for toxicants in ANZG (2018), further analysis of contaminants that exceed the sediment DGV were compared against background concentrations, and laboratory analysis of elutriate and bioavailable concentrations was conducted. The potential for acid sulphate soils was also assessed using the chromium reducible sulfur suite and compared against the Action Criteria published by the Department of Environmental Regulation (DER 2015). Acid-based accounting IABA) was applied to determine the residual acid-producing and acid-neutralizing potential of the sediments.

Assessment of the sediments accumulated in within navigable water was divided into three categories in accordance with the NAGD (2009):

- 1. 'Probably Clean' channel sediments;
- 2. 'Probably Contaminated' harbour sediments associated with the Berths 3, 4 and 5 pockets based on historical monitoring; and
- 3. 'Suspect' sediments within the remaining harbour sediments.

In addition, sampling at the proposed Nearshore Material Placement Area (MAP) was also undertaken, though these are anticipated to be clean, and not assigned under the NAGD as they are not being dredged.

Physical Characteristics

'Probably Clean' and Nearshore MPA sediments were characterised by fine-medium grained, yellow to grey or light brown sands of natural origins such as coastal silicate sands transported to the channel via localised northern longshore drift, or marine carbonate sediments transported via oceanic currents

and swell. No contaminants of potential concern (COPC) were identified for Nearshore MPA or probably clean sediments, which is consistent with previous assessments of channel sediments.

'Suspect' and 'Probably Contaminated' sediments occurring within the harbour were typically comprised of consistently finer material than channel sediments with the exception of sites near the channel entrance which were physically similar to those within the channel. The sediments occurring in Berths 3-7 were comprised of slightly coarser material, described as medium/fine silty sands, than the southeastern corner of the harbour characterised by fine silty sands. Appearance ranged from grey to dark grey and brown throughout the berth pockets and the south-eastern corner.

Metals and Metalloids

Total copper, zinc and mercury at 'Suspect' sediment sites were detected above DGV levels, with the 95% UCL of the mean for copper and zinc exceeding the DGV. Total cadmium, copper, lead and zinc in 'Probably Contaminated' sediment sites were detected above the DGV screening levels, with the 95% UCL of the mean for copper and zinc exceeding the DGV. Terrestrial based ecological and health-based investigation levels were also referenced within this report with the aim of providing a generalised comparison with soil guidelines to consider an option for onshore placement of dredge material. The terrestrial investigation levels indicate contaminants would not exceed soil Environmental Investigation Levels (EILs).

Comparison of total metals to ambient background was undertaken through normalising raw results using aluminum as a normalising element to represent differences in metal concentrations based on particle size between samples for total metals cadmium, copper, lead, iron, manganese, mercury, vanadium and zinc. All metals display a strong linear correlation with aluminum. Normalised 'Suspect' sediments indicated 'Minor' to 'Moderate' enrichment for copper, 'Moderately Severe' to 'Severe' enrichment for zinc and 'No Enrichment' for mercury. Metals manganese, iron and vanadium, with no screening guideline values, recorded 'No Enrichment' to 'Minor'. Normalised 'Probably Contaminated' sediments indicated 'Minor' to 'Moderately Severe' enrichment for cadmium, copper and lead, with 'Severe' to 'Extremely Severe' zinc enrichment. Metals manganese, iron and vanadium, with no screening guideline values, recorded 'No Enrichment' to 'Minor'.

Except for mercury, all samples of total metals that exceeded DGV screening levels were tested using elutriate (dissolved metals) and bioavailable (dilute acid extraction) techniques. Dissolved metal concentrations from 'Suspect' sediments for copper were below the laboratory limit of reporting (LoR) and zinc concentrations from two samples exceed the 90% ecosystem protection guideline. Dissolved metal concentrations from 'Probably Contaminated' sediments for cadmium, copper and lead were below the LoR, with zinc concentrations exceeding the 95% ecosystem protection guideline at one site and 90% at two sites. The dilute acid extraction (DAE) assessment returned results below the LoR for all cadmium and lead samples, whilst copper was only detected at two sites. Zinc ranged between 2-8 mg/kg for all sites within the harbour. All DAE test results were below DGV levels and recorded levels considered acceptable for ocean placement or onshore placement/reuse.

Tributyltin

Tributyltin (TBT) was assessed for all 'Suspect' sites and three 'Probably Contaminated' sites. TBTs normalised to 1% total organic carbon are below the SQG of 9.0 µgSn/kg at all 'Suspect' sites, while the 95% UCL of the means and two sites from the 'Probably Contaminated' sites exceed this level.

Subsequent assessment undertaken on three samples from the 'Probably Contaminated' sites CH4, CH5 and CH6 were analysed for elutriate TBTs. All results were reported below the laboratory LoR and the 95% recommended for moderately disturbed ecosystems (ANZG 2018).

Nutrients

Nutrients were analysed from all 'Probably Contaminated' inner harbour locations and Berth 6 within the 'Suspect' area. The results from this investigation were comparable with historical investigations. Total nitrogen concentrations were typically highest at Berths 3, 4 and 6, with total phosphorous highest at Berth 3 which is commensurate with handling activities for import and export of fertilisers which occurs at these Berths. Nitrogen and phosphorous concentrations and spatial distribution results are comparable with historical investigations. Nitrogen within sediments were identified as almost entirely in organic forms, with no detections of nitrite/nitrate above LoRs.

Nitrogen and phosphorous concentrations within porewater are considerably lower than sediment concentrations, however all detections exceeded the DGV applied. However, the DGV applied is not considered appropriate for a modified Port environment, rather being applicable to natural to slightly disturbed environments. These results are comparable with hieratical investigations, whilst also being within the range of existing groundwater concentrations measured at the Berth 7 reclamation area.

The proportionately lower results for inorganic nitrogen and reactive phosphorous in porewater compared to organic nitrogen forms and total phosphorous in sediments identify nutrients within the marine environment occurring in particulate forms, rather than dissolved forms which are likely explained by import and export of fertilisers across these berths. Furthermore, this demonstrates that either the breakdown of particulate nutrients are occurring slowly within the sediments, or dilution factors are sufficiently large, so that porewaters concentrations, and therefore likely the water column concentrations, are considerably lower.

Based upon the nutrient flux study conducted at the Berth 7 reclaim which determined that existing soil and groundwater nutrients are not impacting marine environmental quality, it is highly unlikely that the relocation of inner harbour sediments into the reclaim will have any adverse impacts on marine environmental quality.

Acid sulfate soils

Acid Sulfate Soil (ASS) Action level criteria were exceeded at all inner harbour sites and at one 'Probably Clean' site. Acid based accounting results indicate that the potential acidity of these sediments are effectively buffered from the acid neutralising capacity (ANC), and therefore there would be a negative net acidity following disturbance of these sediments. However, as the DER (2015) action criteria was exceeded an Acid Sulfate Soils Management Plan will need to be developed, submitted and approved by the Department of Water and Environmental Regulation (DWER) during the environmental referral process.

Based upon this assessment dredge material placement options MWPA may consider include:

- > Beneficial re-use for sustainable relocation for coastal erosion management
 - o Channel sediments only
- > Placement within the Berth 7 reclaim pond

- o All dredge material
- > Sea Dumping
 - All dredge material management consideration required for elutriate TBTs from 'Probably Contaminated' sediments due to insufficient data to assess impacts for 99% SPL required at sea dumping locations.

Acronyms and Abbreviations

Acronyms/Abbreviation	Description
°C	Degrees Celsius
ADAS	Australian Diver Accreditation Scheme
Ag	Silver
Al	Aluminium
As	Arsenic
ASS	Acid Sulphate Soils
AS/NZS	Australian Standard / New Zealand Standard
BTEX	Benzene, Toluene, Ethylbenzene and Xylene
Cd	Cadmium
CGG	City of Greater Geraldton
cm	Centimeter
CoC	Chain of Custody
Cu	Copper
EIL	Ecological Investigation Levels
FBH	Fishing Boat Harbour
Fe	Iron
FRP	Filterable reactive phosphorous
g	Grams
GPS	Global Positioning System
Hg	Mercury
HIL	Health Investigation Levels
HSE	Health, Safety and Environment
ID	Identification
DGV	Default Guideline Value
JSEA	Job Safety and Environmental Analysis
km	Kilometers
KML	Karara Mining Limited
L	Litres
m	Meters
m²	Square meters
m ³	Cubic meters
Mg	Magnesium
mg/kg	Milligrams per kilogram
Mn	Manganese
MWPA	Midwest Ports Authority
NOx	Nitrite/Nitrate combined
NAGD	National Assessment Guidelines for Dredging 2009
NATA	National Association of Testing Authorities
Ni	Nickel

Acronyms/Abbreviation	Description
O2M	O2 Marine
PAH	Polycyclic Aromatic Hydrocarbons
Pb	Lead
PEP	Port Enhancement Project
PSD	Particle Size Distribution
PVC	Polyvinyl chloride
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
SAP	Sampling and Analysis Plan
SCR	Inorganic Sulphur Content
ТВТ	TributyItin
TKN	Total kjedahl nitrogen
TN	Total nitrogen
TOC	Total Organic Carbon
TP	Total phosphorous
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit
μg/L	Micrograms per Litre
V	Vanadium
QA/QC	Quality Assurance and Quality Control
Zn	Zinc

Table of Contents

1.		Introduction	1
	1.1. 1.2. 1.3. 1.4.	Project Description	1 2 5 5
2.		Sampling and Analysis Methods	6
	2.1. 2.2.		6 16
3.		Results	17
		Acid Sulfate Soils	17 25 28 39 41
4.		Discussion	43
	4.1. 4.2. 4.3.	Detailed Site Investigation	43 43 49
5.		Conclusion	52
	5.1.	Recommendations	53
6.		Reference List	54

Figures

Figure 1-1	Location and Layout of Geraldton Port	1
Figure 1-2	Spatial extent of sediment accumulation within the Inner Harbour	3
Figure 1-3	Spatial extent of sediment accumulation within the Navigation Channel	4
Figure 2-1	Final site locations sampled during the SAP implementation program for the Chanell and Inner Harbour2	019. 7
Figure 2-2	Final site locations sampled during the SAP implementation program for the Nearshore MPA	8
Figure 3-1	Sediment classification based on particle size for samples collected from the 'Probably Clean' channel dr area.	redge 18
Figure 3-2	Sediment classification based on particle size for samples collected from the 'Suspect' inner harbour drea area.	dge 19
Figure 3-3	Sediment classification based on particle size for samples collected from the 'Probably Contaminated' in harbour dredge area.	ner 20
Figure 3-4	Sediment classification based on particle size for samples collected from the nearshore placement area.	21
Figure 3-5	Spatial extent of Acid Sulfate Soil Action Criteria Exceedances	27
Figure 3-6	Spatial extent of metals and TBTs which exceeded the DGV and SGV, respectively.	33

- Figure 3-7 Linear regression showing strong correlation between concentrations of Aluminium and a) proportion of muds (clays and silts), b) cadmium, c) copper, d) zinc, e) lead, f) manganese, g) vanadium and h) iron. 34
- Figure 3-8 Spatial extent of sites which exceeded the 90% species Protection Levels for zinc

38

25

40

Tables

- Table 1-1 Identified zones of sediment accumulation, the area and total estimated sediment volume above design. 2
- Table 2-1Sample location details from the 2019 SAP implementation program including coordinates, nominated and
actual sampling depths, and laboratory analysis. Sites denoted with an asterisk (*) identify sites shared with
the routine compliance monitoring program.9
- Table 2-2Analysed analytical suite for each site and sample layer. C means collected and analysed, P collected and
preserved, and N proposed but not collected.13
- Table 3-1
 Descriptive statistics of sediment particle size distribution from the 'Probably Clean' and 'Suspect' dredge areas 22
- Table 3-2Total organic carbon, moisture content and tributyltin for sediment samples from 'Probably Contaminated' and
'Suspect' dredging areas. Red bold text identifies concentrations in excess of the SQG values.24
- Table 3-3 Elutriate TBT results for 'Probably Contaminated Sites'
- Table 3-4Chromium reducible sulfur suite results for sediment samples tested from 'Probably Clean, 'Suspect' and
'Probably Contaminated' dredge areas. Values in red font exceed the Action Criteria for disturbance of >1000
tonnes of soils (DER 2015).26
- Table 3-5Total metal concentrations (mg/kg) for the 'Probably Clean', 'Probably Contaminated' and 'Suspect' sediment
samples from the channel and inner harbour dredging areas. Red bold text identifies concentrations in excess
of the DGV values (where provided).30
- Table 3-6Aluminium normalisation classifications for determining the enrichment factor of parameters at sites which
either exceed the DGV value, or there were no guideline values (except Mn). Enrichment Level No
Enrichment (NE), Minor (Mi), Moderate (Mo), Moderately Severe (MS), Severe (S), Very Severe (VS),
Extremely Severe (ES). Bold, red font indicates DGV exceedances from Table 4-7.36
- Table 3-7Elutriate concentrations for metals which exceeded screening levels or were above ambient background
levels. Red indicates 90% trigger exceedances.37
- Table 3-8 Bioavailable metal results which exceeded screening levels or were above ambient background levels. 39
- Table 3-9 Nutrient concentrations in sediments from Berth 3, 4 5, and 6 sample locations
- Table 3-10Nutrient concentrations in sediment porewaters from Berth 3, 4 5, and 6 sample locations. Red font indicate
exceedances of the DGV.40

Appendices

Appendix A	Sample Chain of Custody Forms	А
Appendix B	Primary Laboratory Analytical Reports	В
Appendix C	Secondary Laboratory Analytical Reports	С
Appendix D	Laboratory QA/QC Reports	D
Appendix E	Sample photographs and descriptions	Е
Appendix F	Field QA/QC Results	V

1. Introduction

1.1. **Project Location**

The Port of Geraldton is located approximately 430 km north of Perth in the Mid-West region of Western Australia (**Figure 1-1**). The Port is administered by the Midwest Ports Authority (MWPA) and presently consists of a shipping channel, a seven berth Commercial Harbour (CH), a large fishing boat harbour (FBH), a tug pen and associated land-based infrastructure. The layout of Geraldton Port has undergone many alterations over the years including moving from its primary location and timber jetty to a single concrete reinforced berth (now referred to as Berth 1), to its current seven berth configuration (**Figure 1-1**). The town of Geraldton has grown around the Port and the shelter of Point Moore, with other major industries of the region including farming and fishing. The waters around Geraldton are one of the State's major western rock lobster fishing grounds and support some 150 fishing vessels each year.

Figure 1-1 Location and Layout of Geraldton Port

1.2. **Project Description**

Recent hydrographic surveys undertaken at Geraldton Port have indicated that since the completion of the 2012 maintenance dredging campaign, ~82,385 m³ of surficial sediment has accumulated within the inner harbour (~13,451 m³) and navigation channel (~70,634 m³).

The most recent hydrographic survey undertaken during February and March 2021 indicate sedimentation occurring in several locations within the inner harbour and navigation channel. Accumulated sediments are beginning to reduce available draft clearance and will require removal to continue safe navigation for vessels entering, loading and exiting the harbour. Figure 1-2 and Figure 1-3 displays the spatial extent of sediment accumulation with Table 1-1 presenting the associated areas of each distinct zone and estimated sedimentation volumes for each.

The majority of channel sedimentation has accumulated along the western edge between Beacons 13 and 19, with smaller amounts also occurring between Beacons 9 and 11 (southern side of the bend) and Beacons 20 to 22 (eastern side of channel entrance). Within the harbour, sedimentation typically occurs within berth pockets from Berth 3 to Berth 7, along the eastern breakwater from the slipway to the channel entrance, with shoaling north of Berth 1/2 and east of Berth 6.

The Midwest Ports Authority (MWPA) is entering into an early phase of planning, which includes investigating options to carry out maintenance dredging works to return the channel and harbour to the original design depths, thus ensuring the safe navigability and continued use of the Port.

Zone	Area (m²)	Volume above Design (m ³)	Lower Forecast Dredge Volume	Upper Forecast Dredge Volume
Channel (12.8m)	61,861	1,299	5,040	6,183
Channel (13.1m)	39,932	7,127	11,435	12,690
Channel (13.5m)	208,161	48,997	79,263	88,196
Channel (14.0m)	628,427	13,211	45,870	56,271
Siltation Allowance	-	-	14,865	22,820
Chanell Total	-	70,634	156,472	186,161
Turning Basin	303,964	5,718	14,018	21,928
Berth 1/2	10,595	0	-	-
Berth 3	10,230	1, 700	3,043	4,542
Berth 4	9,742	1,548	2,384	3,521
Berth 5	10,066	1,856	2,740	4,065
Berth 6	9,615	1,128	2,538	3,819
Berth 7	15,317	1,501	3,000	4,422
Siltation Allowance	-	-	3,340	7,080
Inner Harbour Total	-	13,451	31,063	49,378
Project Total	1,424,612	82,385	187,535	235,539

Table 1-1 Identified zones of sediment accumulation, the area and total estimated sediment volume above design.

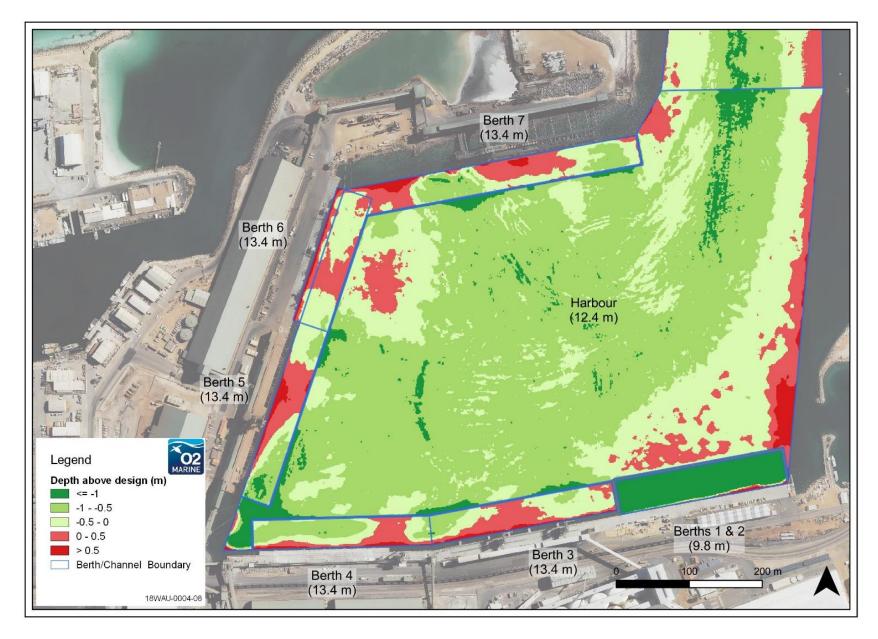


Figure 1-2 Spatial extent of sediment accumulation within the Inner Harbour

18WAU-0004 / R190125 Midwest Ports Authority Geraldton Port Sediment Characterisation Assessment - 2019

Figure 1-3 Spatial extent of sediment accumulation within the Navigation Channel

1.3. **Scope**

The MWPA require an assessment of the potential impacts of proposed dredge material loading and placement activities in accordance with relevant guidelines to support project planning and environmental approvals. O2 Marine (O2M) developed a sediment baseline characterisation Sampling and Analysis Plan (the SAP) (O2M 2019) in accordance with the National Assessment Guidelines for Dredging (NAGD 2009) for the proposed dredging and placement activities at Geraldton Port. The SAP details the dredging proposal (volumes and areas), then sets out the study objectives and the proposed sampling, analysis and quality assurance/quality control procedures required to adequately characterise the sediments to be dredged. This scope entails implementation of the SAP and development of a report detailing the sampling and analysis carried out, as well as presentation and assessment of the results.

1.4. **Objectives**

The broad objective is to implement the requirements of the SAP to assess, characterise and provide sediment quality data to inform the suitability, acceptability or unacceptability of material placement options to advise environmental planning and approvals for future dredging activities. This document details the specific methodology undertaken, presents the data collected, provides an assessment of the results against relevant industry guidelines and provides recommendations for dredge material placement options.

Specific objectives of this document are as follows:

- Outline the sampling program carried out with detail on the number, type and location of samples collected (including replicates and QA samples);
- Detail field logs and descriptions of sediments and any problems encountered or deviations from the procedures set out in the SAP (including justifications for deviations);
- > Presentation and review of the results, including QA/QC assessment of both field and laboratory data, comparison to data quality objectives, and data validation;
- > Assessment of the results in accordance with NAGD (2009);

2. Sampling and Analysis Methods

The sampling and analysis methods are described in detail in the SAP (O2M 2019).

2.1. Field Sampling

Field investigations to implement the SAP were undertaken by three qualified Marine Scientists between 16-18 June 2019. All 28 nominated sample locations (14 channel and 14 harbour) were sampled in accordance with the SAP. However, core refusal occurred at a depth of <0.5 m at sites NC2, NC3, NC4, NC5, NC6 and NC7, which were all nominated for two sampling horizons (<0.5, 0.5-1 m) in the SAP with the objective to assess samples to the full depth of dredging. This resulted in a total of 31 samples as opposed to 37 identified in the SAP.

A subsequent sampling program was conducted in parallel with the annual compliance sediment sampling program between 18-20 February 2020, 23 and 24 March 2021 and 12 May 2021. These subsequent investigations were required to supplement the preliminary investigations including:

- > Inclusion of additional sample sites for increased dredge volumes estimates;
- > Assessment of elutriate TBT at 'Probably Contaminated' sites CH1, CH4, and CH6;
- Assessment of nutrients at 'Probably Contaminated' sites within the shipping pockets at Berths 3- 6; and
- > Assessment of sediments at the proposed Nearshore Material Placement Area (MPA).

The date, coordinates, sample depth (proposed and actual) and proposed dredge depth of the sediment sampling locations nominated from the SAP are presented in **Table 2-1** and displayed in **Figure 2-1**.

Sample locations presented within the SAP for the Nearshore MPA were preliminary and the final locations were collected from the sites presented within **Figure 2-2** and **Table 2-1**

Figure 2-1 Final site locations sampled during the SAP implementation program for the Chanell and Inner Harbour2019.

Table 2-1Sample location details from the 2019 SAP implementation program including coordinates, nominated
and actual sampling depths, and laboratory analysis. Sites denoted with an asterisk (*) identify sites
shared with the routine compliance monitoring program.

Site	Easting	Northing	Approx Dredge Depth (m)	Proposed Sample Depth (m)	Core Refusal Depth (m)	Date (s)
Probably (Clean Sedimer	nts				
NC1	265846.5	6815204.3	0.3	0-0.5	-	17-Jun 2019
NC2	265658.7	6815445.8	1.0	0-0.5 0.5-1.0	0.4	17-Jun 2019
NC3	265680.5	6815565.3	0.79	0-0.5 0.5-1.0	0.4	17-Jun 2019
NC4	265681.8	6815650.9	0.76	0-0.5 0.5-1.0	0.4	17-Jun 2019
NC5	265655.5	6815763.8	1.0	0-0.5 0.5-1.0	0.5	17-Jun 2019
NC6	265638.5	6815918.4	0.96	0-0.5 0.5-1.0	0.4	16-Jun 2019
NC7	265621.4	6815978.8	0.78	0-0.5 0.5-1.0	0.5	16-Jun 2019
NC8	265581.6	6816178.1	0.43	0-0.5	-	16-Jun 2019
NC9	265561.0	6816204.9	0.52	0-0.5	-	16-Jun 2019
NC10	265390.4	6816450.5	0.51	0-0.5	-	16-Jun 2019
NC11	265356.6	6816498.7	0.34	0-0.5	-	16-Jun 2019
NC12	264702.2	6816880.9	0.25	0-0.5	-	16-Jun 2019
NC13	264679.3	6816898.3	0.28	0-0.5	-	16-Jun 2019
NC14	264581.7	6816902.8	0.51	0-0.5	-	16-Jun 2019
NC15	264728.2	6817096.6	0.34	0-0.5	-	24-Mar 2021
NC16	265328.4	6816817.2	0.44	0-0.5	-	24-Mar 2021
NC17	265547.8	6816563.1	0.46	0-0.5	-	24-Mar 2021
NC18	265593.1	6816091.3	0.76	0-0.5 0.5-1.0	0.5	24-Mar 2021
NC19	265655.3	6815863.7	0.81	0-0.5 0.5-1.0	0.5	24-Mar 2021
Suspect S	ediments					
CH7*	265172.7	6814768.3	0.23	0-0.5	-	17-Jun 2021 24-Mar 2021
CH8*	265266.3	6814884.6	0.77	0-0.5 0.5-1.0	-	17-Jun 2021 24-Mar 2021
CH10*	265662	6814999	0.21	0-0.5	-	17-Jun 2021
CH11	265629.7	6814973.8	0.19	0-0.5	-	18-Jun 2021
CH12	265252.7	6814754.7	0.66	0-0.5	-	17-Jun 2021

Site	Easting	Northing	Approx Dredge Depth (m)	Proposed Sample Depth (m)	Core Refusal Depth (m)	Date (s)
				0.5-1.0		
CH13	265440.4	6814916.7	0.15	0-0.5	-	17-Jun 2021
CH14	265822.7	6814751.5	0.88	0-0.5 0.5-1.0	-	18-Jun 2021
CH15	265805.9	6814580.4	0.17	0-0.5	-	18-Jun 2021
CH16	265692.4	6814534.2	0.24	0-0.5	-	24-May 2021
CH17	265794.8	6814623.5	0.18	0-0.5	-	23-May 2021
CH18	265189.9	6814746.7	0.21	0-0.5	-	23-May 2021
CH19	265241.4	6814871.1	0.32	0-0.5	-	23-May 2021
Probably (Contaminated	Sediments				
CH1*	265465.0	6814441.0	0.04	0-0.5	-	18-Jun 2019 24-Mar 2021
CH2*	265402.3	6814420.0	0.18	0-0.5	-	18-Jun 2019 24-Mar 2021
CH3*	265271.0	6814425.0	0.03	0-0.5	-	18-Jun 2019 20-Feb 2020 24-Mar 2021
CH4*	265133.0	6814394.0	0.16	0-0.5	-	18-Jun 2019 20-Feb 2020 24-Mar 2021
CH5*	265091.0	6814535.0	0.29	0-0.5	-	17-Jun 2019 24-Mar 2021
CH6*	265123.0	6814630.0	0.39	0-0.5	-	17-Jun 2019 18-Feb 2020 24-Mar 2021
Nearshore	Placement Ar	ea				
NPA1	265975.7	6819411.6	-	0-0.2	-	12-May 2021
NPA2	266087.3	6819333.0	-	0-0.2	-	12-May 2021
NPA3	266165.9	6819145.4	-	0-0.2	-	12-May 2021
NPA4	265960.6	6818616.1	-	0-0.2	-	12-May 2021
NPA5	266003.5	6818284.8	-	0-0.2	-	12-May 2021

2.1.1. Sample Collection

Sediment samples were collected by Marine Scientists commercially trained in SCUBA in accordance with Australian Standard AS2815.1 and AS2299.2:2002 and the SAP. With the exception of core refusal at several sites described within **Section 2.1**, the sampling process was adhered to at all sampling locations.

Sample collection from the Nearshore MPAs were collected using a sediment grab, collected from each site using the MWPA Vessel 'MV Jorgenson'.

2.1.2. Laboratory Testing

Sediment Samples

Sample storage and transport was undertaken in accordance with the SAP. This included the development of Chain of Custody (CoC) forms which accompanied the samples transported to the NATA-accredited laboratory for analysis. Copies of the CoC are provided in **Appendix A**.

The primary NATA accredited laboratory was Analytical Reference Laboratories (WA) Pty Ltd for total metals, dilute acid extraction metals, total organic carbon (TOC) and the sulfur reducible chromium suite. ARL also subcontracted the following testing:

- MPL Laboratories: elutriate metals, tributyltin (TBT); and
- MicroAnalysis: particle size distribution (PSD).

ALS was the secondary laboratory used for interlaboratory field split analysis.

During subsequent testing conducted in 2020 for elutriate TBTs, ALS was selected as the primary laboratory.

Laboratory analytical reports are presented in the Appendixes as follows:

- > ARL (including subcontracted services) Appendix B
- > ALS Appendix C
- > ALS Elutriate TBTs Appendix C

During subsequent testing conducted in 2020 for elutriate TBTs, ALS was selected as the primary laboratory.

QA/QC Samples

As per the SAP, the following QA/QC samples were collected:

- Triplicate samples, that is three separate samples taken at the same location, to determine the variability of the sediment physical and chemical characteristics, taken at a minimum of three (3) sites; and
- > Field split samples, that is three samples taken from a thoroughly mixed and homogenised sample with one sample sent to a secondary laboratory to assess inter-laboratory variation, collected from a minimum of two sites.

During implementation the following QA/QC samples were collected as per the NAGD (Table 2-1):

- > Four triplicate samples were collected from:
 - CH1;
 - CH5;
 - \circ CH10; and
 - NC17.

- > Three field split samples were collected from:
 - CH2;
 - CH3; and
 - CH8.

All QA/QC samples were taken from the 0-0.5 m layer.

A sampling error for TOC and TBT resulted in only two split samples, rather than three, collected for the field splits with one sample analysed by each laboratory. No QA/QC samples were collected for chromium suite analysis.

Laboratory QA/QC

The analytical procedures are presented within laboratory QA/QC reports included within Appendix D.

Analytical Suite

Sediment samples were analysed in accordance with the SAP.

A full summary of the sediment samples that were analysed and preserved is provided in Table 2-2.

Site	Proposed Sample Depth (m)	Core Refusal Depth (m)	Total Metals	Elutriate Metals	DAE Metals	TOC TBT	PSD	ASS	Elutriate TBT	Field Triplicate	Field Split
	Probably Clean – Ch	annel									
NC1	0-0.5	-	С	-	-	-	С	С	-	-	-
NC2	0-0.5 0.5-1.0	0.4	P N	-	-	-	P N	P N	-	-	-
NC3	0-0.5 0.5-1.0	0.4	C N	-	-	-	C N	C N	-	-	-
NC4	0-0.5 0.5-1.0	0.4	P N	-	-	-	P N	P N	-	-	-
NC5	0-0.5 0.5-1.0	0.5	C N	-	-	-	C N	C N	-	-	-
NC6	0-0.5 0.5-1.0	0.4	P N	-	-	-	P N	P N	-	-	-
NC7	0-0.5 0.5-1.0	0.5	C N	-	-	-	C N	C N	-	-	-
NC8	0-0.5	-	Р	-	-	-	Ρ	Ρ	-	-	-
NC9	0-0.5	-	С	-	-	-	С	С	-	-	-
NC10	0-0.5	-	Р	-	-	-	Ρ	Р	-	-	-
NC11	0-0.5	-	С	-	-	-	С	С	-	-	-
NC12	0-0.5	-	Р	-	-	-	Ρ	Р	-	-	-
NC13	0-0.5	-	С	-	-	-	С	С	-	-	-
NC14	0-0.5	-	Р	-	-	-	Ρ	Р	-	-	-
NC15	0-0.5	-	Р	-	-	-	Ρ	Ρ	-	-	-
NC16	0-0.5	-	Р	-	-	-	Ρ	Ρ	-	-	-
NC17	0-0.5	-	С	-	-	-	С	Р	-	C ³	-

Table 2-2 Analysed analytical suite for each site and sample layer. C means collected and analysed, P collected and preserved, and N proposed but not collected.

Site	Proposed Sample Depth (m)	Core Refusal Depth (m)	Total Metals	Elutriate Metals	DAE Metals	тос твт	PSD	ASS	Elutriate TBT	Field Triplicate	Field Split
NC18	0-0.5 0.5-1.0	0.5	С	-	-	-	С	Ρ	-	-	-
NC19	0-0.5 0.5-1.0	0.45	С	-	-	-	С	Ρ	-	-	-
	Suspect – Inner Har	bour									
CH7	0-0.5	-	С	С	С			С	-	-	-
CH8-S CH8-D	0-0.5 0.5-1.0	-	С	C P	C P	C C	C C	C C	-	-	C ²
CH10	0-0.5	-	С					С	-	C ³	-
CH11	0-0.5	-	С	Composite 1	Composite	С	С	С	-	-	-
CH12-S CH12-D	0-0.5 0.5-1.0	-	C C		1	C C	C C	C C	-	-	-
CH13	0-0.5	-	С			С	С	С	-	-	-
CH14-S CH14-D	0-0.5 0.5-1.0	-	C C	Composite 2	Composite 2	C C	C C	C C	-	-	-
CH15	0-0.5	-	С			С	С	С	-	-	-
CH16	0-0.5	-	С	-	-	С	С	-	-	-	-
CH17	0-0.5	-	С	-	-	С	С	-	-	-	-
CH18	0-0.5	-	С	-	-	С	С	-	-	-	-
CH19	0-0.5		С	-	-	С	С	-	-	-	-
	Probably Contamina	ated – Inner Harbou	r								
CH1	0-0.5	-	С	С	С	С	С	С	-	C ³	-
CH2	0-0.5	-	С	С	С		С	С	-	-	C ²
CH3	0-0.5	-	С	С	С	С	С	С	-	-	C ²
CH4	0-0.5	-	С	С	С		С	С	С	-	-
CH5	0-0.5	-	С	С	С	С	С	С	С	C ³	-

18WAU-0004 / R190125

Midwest Ports Authority Geraldton Port Sediment Characterisation Assessment - 2019

Site	Proposed Sample Depth (m)	Core Refusal Depth (m)	Total Metals	Elutriate Metals	DAE Metals	тос твт	PSD	ASS	Elutriate TBT	Field Triplicate	Field Split
CH6	0-0.5	-	С	С	С	С	С	С	С	-	-
	Nearshore Material I	Placement Area									
NPA1	0-0.2	-	С	-	-	С	С	-	-	C ³	-
NPA2	0-0.2	-	С	-	-	С	С	-	-	-	-
NPA3	0-0.2	-	С	-	-	С	С	-	-	-	C ²
NPA4	0-0.2	-	С	-	-	С	С	-	-	-	-
NPA5	0-0.2	-	С	-	-	С	С	-	-	-	-

2.2. Sediment Data Assessment

Sediment data assessment was undertaken in accordance with the SAP with the following described deviations.

2.2.1. Pooled Data Sets

The SAP recommended that data from the 0-0.5 m and 0.5-1.0 m layers be assessed against screening levels separately for the 'Probably Clean' and 'suspect' sample sites. However, the implementation program differed from the SAP in the following manner:

- No 0.5-1.0 m samples were collected from 'Probably Clean' sites due to core refusal occurring before 0.5 m. Therefore only 0-0.5 m samples were collected; and
- > Three samples were collected as proposed within the SAP from 'Suspect' sample sites from the 0.5-1.0 m horizon. Due to the low number it was considered that these three samples should be pooled with the 0.0-0.5 m horizon samples for the purposes of assessment.

2.2.2. Elutriate and Bioavailability Assessment

In this investigation elutriate and bioavailability tests were conducted for each metal and TBT, from each sample that exceeded screening levels. For 'Suspect' sediments, metals tests were undertaken from both samples CH7 and CH8-S, along with two composite samples, incorporating homogenised sediments from the following sites under laboratory conditions:

- 1. CH10, CH11, CH12-S and CH12-D.
- 2. CH13, CH14-S, CH14-D and CH15.

These composite samples were grouped according to their CH locations and associated PSD characteristics as described in **Section 3.1.1**.

This regime of testing for elutriate metals is consistent and above minimum requirements stipulated within the NAGD (2009), whilst taking into consideration the nature of the dredge sediments which are not entirely uniform, or consistent (i.e. within one discreet location particularly 'Suspect' dredge sediments).

2.2.3. Nutrient analysis

The current ANZG (2018) guideline does not include updated investigation levels for nutrients in marine waster. Therefore, the ANZECC/ARMCANZ (2000) default trigger values physical and chemical stressors for South-wet Australia for Marine (inshore) have been used as a guide to assess sediment nutrient concentrations for porewater. No guidelines are applicable to sediment concentrations as there are no established guidelines for terrestrial soil (i.e. NEPM and DEC environmental investigation levels).

3. **Results**

3.1. Sediment Properties

3.1.1. Field Observations

Probably Clean Sediments - Navigation Channel

A summary of the sediment characteristics of the samples collected from the channel 'Probably Clean' sites is presented in **Appendix E**. Channel sediments are quite consistent across the 17 sites sampled, predominately comprising medium to fine 'beach' sands of natural origins. Very little organic matter is present, typically confined to the surface 1 cm. Surface sediments are typically a yellow-light brown colour, becoming progressively greyer with depth. Most cores were quite densely packed but soft once removed and placed into the sampling container. Living biota (infauna) are typically present within sediments, dominated by echinoderms and small crustaceans.

Suspect Sediments

A summary of the sediment characteristics of the samples collected from the CH 'Suspect' sites is presented in **Appendix E**. Suspect sediments varied depending on their location within the inner harbour. Locations near the channel entrance (CH10, CH12, CH13 CH18 and CH19) comprised medium to fine 'beach' sands, fine silty sands composed samples collected at sites near the tug pen entrance (CH14-CH17) and inner harbour samples (CH7, CH8, CH11,) comprised medium fine silty sands. Sediments are typically grey in colour varying to brown or dark grey at some locations. Shell grit/fragments are quite common, though living biota was not observed. Organic matter, typically seawrack, is common throughout 'Suspect' sediment samples.

Probably Contaminated Sediments

A summary of the sediment characteristics of the samples collected from the CH 'Probably Contaminated' sites is presented in **Appendix E**. Samples typically comprised a variety of sands ranging from fine to medium grained. Sediments are generally grey to dark grey, with CH1 recording a grey/brown colour. Foreign material is present in most sediments as sea-wrack. High or medium levels of foreign material were recorded from CH1, CH2 and CH3, likely to be decomposing grain matter resulting from windblown dust or spillages from adjacent loading operations. All samples recorded levels of shell grit or fragments with CH5 recording medium levels. No odours other than standard organic smell was noted.

Nearshore Placement Area

A summary of the sediment characteristics of the samples collected from the nearshore placement area is presented in **Appendix E**. Nearshore placement area sediments are quite consistent across the five sites sampled, predominately comprising medium to fine 'beach' sands of natural origins. Very little organic matter is present and sediments are typically a yellow-light brown colour. Most cores were quite densely packed but soft once removed and placed into the sampling container. Living biota (infauna) were not observed from the collected sediments.

3.1.2. Particle Size Distribution

Channel 'Probably Clean' Sediments

Sediment classifications based on the PSD from each sample are shown in **Figure 3-1** and descriptive statistics provided in **Table 3-1**. Raw laboratory results for PSD are provided in **Appendix B**.

PSD analysis for the channel samples indicate sediments are predominately composed of sand sized particles ($\overline{x} = 89.7\%$). The proportion of sand fraction within samples are predominantly fine sand ranging from 54.1% to 78.2%, whilst medium sand ranged between 5.3% to 41.6%. The proportion of gravel, coarse sand and clay was low, typically <4%.

The PSD across sites NC1-NC11 and NC18-NC19 are typically comparable, dominated by fine sand with low silt/coarse sand and moderate medium sand content. NC13 contains a relatively higher proportion of medium sands (41.6%) and less coarse sand (0.45%). NC17 had a higher proportion of finer sediment (clay, silt + fine sand) and a much lower proportion of medium (0.83%) and coarse (0.59%) sands when compared to most other sites.

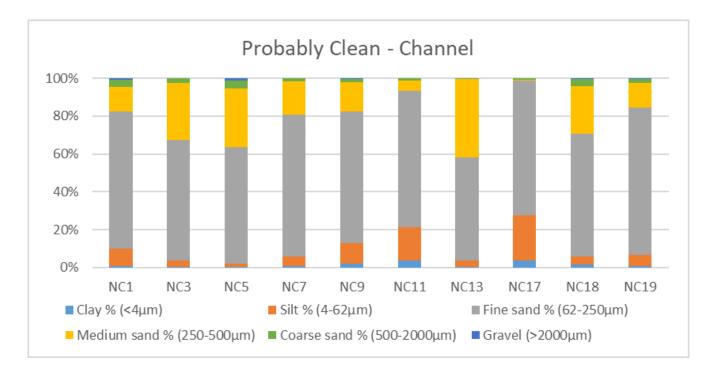


Figure 3-1 Sediment classification based on particle size for samples collected from the 'Probably Clean' channel dredge area.

Inner Harbour 'Suspect'

Sediment classifications based on the particle size distributions from each sample are shown in **Figure 3-2** and descriptive statistics provided in **Table 3-1**. Further details of the laboratory analysis results for PSD are provided in **Appendix B**.

PSD analysis for the suspect samples indicate sediments are predominately composed of silt and sand sized particles ($\overline{x} = 49.4$ % & 38.7%, respectively). The silt fraction within samples range from 34.3% to

62.8%. Sand fractions are typically comprised of fine sand ($\overline{x} = 28.7\%$) and some medium sand ($\overline{x} = 6.57\%$). Clays range between 4.5% to 14.6%, whilst gravel is either in low proportion or non-existent.

Two distinct PSDs are observed across sites relative to their location within the inner harbour; the NW inner harbour (CH8-D, CH11, and CH12) and the SW and W inner harbour (CH13, CHG14, CH15, CH16, CH17, CH18, CH19). The SW and W inner harbour sites typically comprise a higher proportion of silt particles and lower proportion of larger fractions. Deeper samples (0.5-1 m) collected from sites CH12 and CH14 indicate little variation in PSD compared to surficial samples from the same sites.

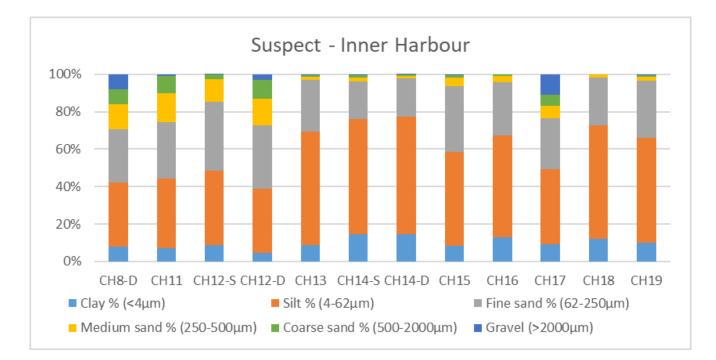


Figure 3-2 Sediment classification based on particle size for samples collected from the 'Suspect' inner harbour dredge area.

Inner Harbour 'Probably Contaminated'

Sediment classifications based on the particle size distributions from each sample are shown in **Figure 3-3** and descriptive statistics provided in **Table 3-1**. Further details of the laboratory analysis results for PSD are provided in **Appendix B**.

PSD analysis for the probably contaminated samples indicate sediments are predominately composed of clay, silt and fine sand sized particles ($\bar{x} = 17.0\%$, 17.4% & 34.4%, respectively). The clay fraction within sediments ranges from 14.0% to 21%, the silt fraction ranges from 11.0% to 27.0%, whilst fine sand range between 25% to 48%. Medium and coarse sands and gravels account for a maximum combined particle size distribution of 39% at CH5. There is no discernible spatial pattern in particle size distribution and all samples are generally comparable.

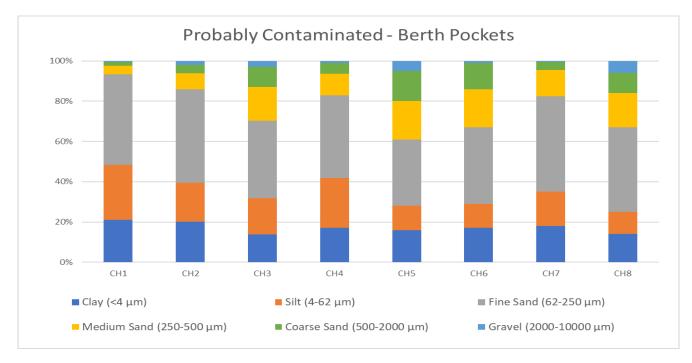


Figure 3-3 Sediment classification based on particle size for samples collected from the 'Probably Contaminated' inner harbour dredge area.

Nearshore Material Placement Area

Sediment classifications based on the particle size distributions from each sample are shown in **Figure 3-4** and descriptive statistics provided in **Table 3-1**. Further details of the laboratory analysis results for PSD are provided in **Appendix B**.

Nearshore MPA sediments are almost entirely comprised of sand sized particles ($\overline{x} = 98.5\%$). Medium sands comprise the highest distribution ($\overline{x} = 56.4\%$) with fine sands second ($\overline{x} = 31.1\%$). Mud sized particles are very low ($\overline{x} = 0.04\%$), as well as gravels ($\overline{x} = 1.44\%$).

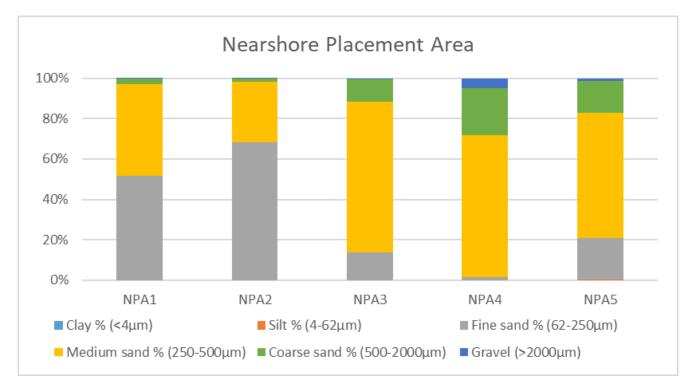


Figure 3-4 Sediment classification based on particle size for samples collected from the nearshore placement area.

Table 3-1 Descriptive statistics of sediment particle size distribution from the 'Probably Clean' and 'Suspect' dredge areas

Statistic	Clay (%)	Silt (%)	Sand (%)	Gravel (%)
Probably Clean -	Channel			
Min	0.2	1.9	72.2	0.0
Max	3.8	24.0	96.6	1.3
Mean	1.5	8.5	89.7	0.3
SD	1.3	7.2	8.2	0.4
n	10	10	10	10
Suspect Inner Ha	rbour			
Min	4.5	34.3	22.5	0.0
Max	14.6	62.8	58.2	11.1
Mean	9.8	49.4	38.7	2.0
SD	3.1	11.3	12.4	3.6
n	12	12	12	12
Probably Contam	inated Inner Harbour			
Min	14.0	11.0	51.0	0.5
Max	21.1	27.0	70.0	6.0
Mean	17.0	17.4	62.3	2.4
SD	2.6	5.7	7.3	2.1
n	8	8	8	8
Nearshore Placen	nent Area			
Min	0.0	0.0	94.9	0.06
Max	0.0	0.42	99.94	5.10
Mean	0.0	0.08	98.5	1.44
SD	-	0.19	2.10	2.10
n	5	5	5	5

3.1.3. Total Organic Carbon, Moisture Content and Tributyltin

The TOC, moisture content and TBT levels for sediment samples from the 'Suspect' and 'Probably Contaminated' dredge areas are presented in **Table 3-2** and raw laboratory results presented in **Appendix B**.

Sediment samples from the 'Suspect' dredge area are composed of relatively low TOC results that range between 1.1-3.0%. TOC for samples with two depth profiles (CH12 and CH14) indicate little variation with TOC and depth, although this observation is based upon a limited sample size (n=2). Moisture content is moderate ranging from 39.2-60.8%. Normalised TBT concentrations are below the SQG for all sites. The corresponding 95% UCL of the means for 'Suspect' dredge areas is 3.9 ugSn/kg, which is lower than the SQG of 9.0 ugSn/kg.

Sediment samples from the 'Probably Contaminated' dredge area range between 0.5 – 1.9% for TOC, whilst the corresponding moisture content is moderate, ranging between 31.4-50.6%. Normalised TBT concentrations are above the SQG at CH1 and CH5, and below the SQG at CH3. The corresponding 95% UCL of the means for 'Probably Contaminated' dredge area is 13.5 ugSn/kg, which is higher than the SQG of 9.0 ugSn/kg.

Sediment samples comprised very low TOC from all five samples collected at the Nearshore MPA.

Figure 3-6 spatially displays the sites which exceeded the SQG for TBTs.

 Table 3-2
 Total organic carbon, moisture content and tributyltin for sediment samples from 'Probably Contaminated' and 'Suspect' dredging areas. Red bold text identifies concentrations in excess of the SQG values.

Location	Total Organic Carbon (%)	Moisture Content (%)	Tributyltin (ugSn/kg) ¹
SQG			9.0
Suspect – Inner Harbo	our		
CH8-D	1.2	40.1	2.3
CH11	1.4	46.3	5.4
CH12-S	1.3	39.2	6.9
CH12-D	1.1	-	2.6
CH13	3.0	60.8	1.3
CH14-S	2.4	43.6	3.4
CH14-D	2.0	-	5.5
CH15	2.6	54.3	2.8
CH16	2.8	53.6	2
CH17	1.5	46.6	2
CH18	2.4	55.4	1
CH19	2.4	54.6	1
95% UCL		-	3.9
Probably Contaminate	ed – Inner Harbour		
CH1	1.3	39.4	13.1
CH3	1.9	50.6	6.3
CH5	0.5	31.4	12.8
95% UCL	-	-	13.5
Nearshore Material Pla	acement Area		
NPA1	0.2	-	-
NPA2	0.2	-	-
NPA3	0.2	-	-
NPA4	0.2	-	-
NPA5	0.2	-	-

¹ Normalised to 1 per cent TOC.

3.1.4. Elutriate Tributyltin

Elutriate TBTs were collected from the 'Probably Contaminated' sediments and analysed in accordance with the SAP (O2M 2019) and the NAGD, with results presented in **Table 3-3** and raw data provided in **Appendix C**.

The LoR for elutriate TBT was insufficiently low to provide comparison with the 99% SPL. However, ANZG (2018) guidelines classify port areas as *slightly to moderately disturbed* ecosystems, indicating the 99% SPL is not required to be met within inner harbour sites.

Elutriate TBT concentrations for all three sites tested are below the laboratory LoR (0.002 μ gSn/L) for all analysed samples. This is significantly lower than the 95 SPL which is set as 0.006 μ gSn/L.

Table 3-3	Elutriate TBT results for 'Probably Contaminated Sites'
Table 3-3	Elutinate I BT results for Frobably Containinated Sites

Species Protection Level Level	ТВТ
99% SPL	0.0004
95% SPL	0.006
90% SPL	0.02
LoR	0.002
Probably Contaminated – Inner Harbo	ur
CH3-1	<0.002
CH4-1	<0.002
CH6-1	<0.002

3.2. Acid Sulfate Soils

The chromium reducible sulfur suite results from the 'Probably Clean', 'Suspect' and 'Probably Contaminated' dredge areas are presented in **Table 3-4**. Raw results are presented in full in **Appendix B**.

The pH_{KCl} in all the sediment samples is greater than 6.5 and therefore Actual ASS are not present. One sample from the 'Probably Clean' and all samples from the inner harbour ('Probably Contaminated' and 'Suspect') recorded sulfur values (%S (S_{Cr})) which exceed the Action Criteria. These sediments are therefore considered Potential Acid Sulfate Soils (PASS). **Figure 3-5** displays the spatial extent of sites which exceeded the Action Criteria.

To determine the net acidity of the PASS sediment samples, Acid-base accounting (ABA) was conducted and the findings are presented in **Table 3-4**. The results indicate the potential acidity of sediments are effectively buffered from the acid neutralising capacity (ANC), and therefore there would be a negative net acidity following disturbance of these sediments.

Table 3-4Chromium reducible sulfur suite results for sediment samples tested from 'Probably Clean, 'Suspect'
and 'Probably Contaminated' dredge areas. Values in red font exceed the Action Criteria for disturbance
of >1000 tonnes of soils (DER 2015).

Location	pHKCL	TAA (mol H+/t)	%S (SCr)	Potential acidity (mol H+/t)	ANCBT (%CaCO3)2	ANC (mol H+/t)	FF	Net acidity (mol H+/t)3
Action criteria (%S)			0.03	18				
Probably Cle	ean – Channe	el						
NC1	9.5	<2	0.02	12				
NC3	9.7	<2	0.02	12				
NC5	9.8	<2	0.01	<8				
NC7	9.7	<2	0.02	12				
NC9	9.7	<2	<0.01	<8				
NC11	9.6	<2	0.04	25	97	19,000	1.5	-12642
NC13	9	<2	0.02	12				
Suspect – In	ner Harbour							
CH7	8.9	<2	0.46	290	74	15,000	1.5	-9710
CH8-S	9.3	<2	0.31	190	63	13,000	1.5	-8477
CH8-D	9.2	<2	0.18	110	67	13,000	1.5	-8557
CH10	9.1	<2	0.17	110	55	11,000	1.5	-7223
CH11	9.1	<2	0.26	160	78	16,000	1.5	-10507
CH12-S	9.2	<2	0.32	200	74	15,000	1.5	-9800
CH13	8.6	<2	0.23	140	80	16,000	1.5	-10527
CH14-S	8.9	<2	0.74	460	81	16,000	1.5	-10207
CH15	8.8	<2	0.58	360	77	15,000	1.5	-9,640
Probably Co	ontaminated -	- Inner Harb	our					
CH1	9.2	<2	0.26	160	62	12,000	1.5	-7840
CH2	8.9	<2	0.39	240	77	15,000	1.5	-9760
CH3	9	<2	0.62	390	78	16,000	1.5	-10277
CH4	8.9	<2	0.72	450	72	14,000	1.5	-8883
CH5	9.3	<2	0.24	150	88	18,000	1.5	-11850
CH6	9.1	<2	0.42	260	71	14,000	1.5	-9073

Figure 3-5 Spatial extent of Acid Sulfate Soil Action Criteria Exceedances

3.3. Metals and Metalloids

The total metal concentrations in sediment samples from the CH and navigational channel are presented in **Table 3-5** and raw laboratory results are presented in **Appendix B**.

3.3.1. Comparison of Data to Screening Levels

A comparison of metal concentrations and the 95% UCLs to the screening levels described in the SAP (O2M 2019) are presented in **Table 3-5**. Where a value is reported below the LoR, a value of 50% of the LoR is applied to determine the 95% UCL of the mean.

Figure 3-6 spatially displays the sites where DGV exceedances are recorded.

Probably Clean - Channel Sediments

Screening levels are not exceeded for any metals in any samples from navigational channel sites. Therefore, the 95% UCLs of the means are also below screening levels. Cadmium, nickel and vanadium recorded values below LoRs at some sites, whilst silver and mercury are below the LoRs at all sites.

Suspect - Inner Harbour Sediments

Concentrations in exceedance of the DGV screening levels for copper (14 sites), zinc (12 sites) and mercury (one site) are present in 'Suspect' sediments. The 95% UCLs of the means exceed the DGV screening level for copper and zinc. No default EILs are exceeded, however the zinc concentration exceeds the low-level EIL at CH7, but not the high level EIL.

Probably Contaminated - Inner Harbour Sediments

Concentrations in exceedance of the DGV screening levels for cadmium (two sites), copper (all sites), lead (one site) and zinc (five sites) are present in 'Probably Contaminated' sediments. The 95% UCLs of the means exceed the DGV screening level for copper and zinc. 95% UCLs of the means for the remaining metals are below their relevant DGV screening level. No default EILs are exceeded, however zinc concentrations exceed the low-level EIL at CH3 and CH4 and the 95% UCL of the means. The high-level zinc EIL is not exceeded at any sites. No concentrations exceed the HILs for any contaminant at any site or their respective 95% UCLs.

Nearshore Placement Area

All metals from sediments at the Nearshore MPA are below the assigned DGVs.

3.3.2. Metals Normalisation

Results for the linear regression analysis of concentrations of Aluminium is shown in **Figure 3-7**. Linear regression shows a positive correlation between Aluminium and:

- > The proportion of mud (clay and silt) fractions ($r^2=0.61$);
- > Cadmium ($r^2=0.88$);
- > Copper (r²=0.91);
- > Lead $(r^2=0.90);$
- > Iron (r²=0.94);

- > Manganese (r²=0.86);
- > Vanadium ($r^2=0.94$) and
- > Zinc ($r^2=0.89$).

 Table 3-5
 Total metal concentrations (mg/kg) for the 'Probably Clean', 'Probably Contaminated' and 'Suspect' sediment samples from the channel and inner harbour dredging areas. Red bold text identifies concentrations in excess of the DGV values (where provided).

Total Metals (mg/kg)	AI	As	Cd	Cr	Cu	Pb	Mn	Ni	Zn	Ag	Fe	V	Hg
LoR	1	0.1	0.1	1	1	1	1	1	1	1	1	2	0.02
DGV		20	1.5	80	65	50		21	200	1			0.15
EILs		170		310	1208	1,800		55	363-2003				
HILs (D)		3,000	800	(VI) 3,000	250,000	1,500	40,000	4,000	400,000				4,000
Probably Clean - C	hannel												
NC1	800.0	1.9	0.10	11.0	18.0	3.0	28.0	1.0	15.0	<0.1	1300.0	4.0	<0.02
NC3	220.0	1.4	<0.1	12.0	14.0	2.0	14.0	<0.1	5.0	<0.1	540.0	<2.0	<0.02
NC5	240.0	1.3	<0.1	13.0	13.0	2.0	17.0	<0.1	3.0	<0.1	520.0	<2.0	<0.02
NC7	290.0	1.1	<0.1	12.0	15.0	2.0	17.0	<0.1	6.0	<0.1	650.0	2.0	<0.02
NC9	310.0	1.5	0.10	11.0	14.0	1.0	16.0	<0.1	6.0	<0.1	700.0	2.0	<0.02
NC11	340.0	1.7	<0.1	11.0	14.0	2.0	21.0	<0.1	7.0	<0.1	780.0	3.0	<0.02
NC13	300.0	2.0	<0.1	15.0	12.0	1.0	21.0	<0.1	3.0	<0.1	820.0	3.0	<0.02
NC17-1	420.0	2.8	0.1	11.0	12.0	1.0	25.0	0.5	15.0	0.05	1100.0	3.0	0.005
NC18	250	1.4	0.05	13	10	0.5	17	0.5	5	0.05	650	2	0.005
NC19	320	1.5	0.05	13	11	0.5	15	0.5	8	0.05	720	2	0.005
95% UCL	446.4	1.9	0.08	13.0	14.6	2.0	21.7	0.6	9.8	0.5	920.4	2.9	0.01
Median	305.0	1.5	0.1	12.0	13.5	1.5	17.0	0.5	6.0	0.5	710.0	2.0	0.0
Mean	349.0	1.7	0.1	12.2	13.3	1.5	19.1	0.6	7.3	0.4	778.0	2.3	0.0
Std Deviation	168.4	0.5	0.0	1.3	2.3	0.8	4.6	0.2	4.3	0.2	245.7	0.9	0.0
Suspect – Inner Ha	rbour												
CH7	2800.0	6.0	1.10	19.0	230.0	33.0	46.0	4.0	370.0	<0.1	9100.0	17.0	0.13

Total Metals (mg/kg)	AI	As	Cd	Cr	Cu	Pb	Mn	Ni	Zn	Ag	Fe	V	Hg
CH8-S	1900.0	3.9	0.60	15.0	110.0	17.0	34.0	3.0	170.0	<0.1	5200.0	12.0	0.06
CH8-D	1800.0	4.0	0.70	17.0	140.0	20.0	41.0	4.0	230.0	<0.1	5400.0	12.0	0.09
CH10	1500.0	4.1	0.40	19.0	53.0	8.0	30.0	3.0	83.0	<0.1	4500.0	9.0	0.03
CH11	2000.0	4.7	0.90	20.0	170.0	27.0	70.0	4.0	310.0	<0.1	7400.0	17.0	0.08
CH12-S	2200.0	4.5	0.50	19.0	150.0	22.0	49.0	4.0	240.0	<0.1	12000.0	14.0	0.06
CH12-D	1900.0	4.4	0.70	18.0	140.0	20.0	49.0	3.0	240.0	<0.1	7100.0	13.0	0.08
CH13	2200.0	6.4	0.80	20.0	150.0	23.0	42.0	4.0	250.0	<0.1	7900.0	16.0	0.07
CH14-S	5300.0	8.6	1.10	26.0	150.0	38.0	77.0	5.0	300.0	<0.1	9100.0	24.0	0.12
CH14-D	4300.0	7.0	0.80	23.0	150.0	32.0	72.0	5.0	280.0	<0.1	8000.0	21.0	0.25
CH15	2300.0	6.2	1.00	22.0	200.0	31.0	52.0	4.0	320.0	<0.1	8800.0	18.0	0.07
CH16	2,700	6.9	0.8	25.0	250.0	33.0	54.0	5.0	370.0	0.3	11000.0	21.0	0.06
CH17	1,600	4.1	0.4	19.0	120.0	17.0	34.0	3.0	170.0	0.1	5700.0	12.0	0.03
CH18	2,300	6.2	0.7	23.0	170.0	22.0	43.0	4.0	260.0	0.2	8200.0	16.0	0.04
CH19	2,000	5.9	0.6	20.0	150.0	19.0	38.0	3.0	240.0	0.2	7200.0	14.0	0.05
95% UCL	2923.0	6.2	0.84	21.7	177.1	27.8	55.3	4.2	290.3	0.48	8725.0	17.6	0.11
Median	2200.0	5.9	0.7	20.0	150.0	22.0	46.0	4.0	250.0	0.5	7900.0	16.0	0.07
Mean	2453.3	5.5	0.7	20.3	155.5	24.1	48.7	3.9	255.5	0.4	7773.3	15.7	0.1
Std Deviation	1033.6	1.4	0.2	3.0	47.3	8.0	14.3	0.7	76.4	0.1	2092.3	4.1	0.1
Probably Contamir	nated – Inner	Harbour											
CH1	2000.0	6.3	0.80	18.0	99.0	16.0	59.0	3.0	180.0	<0.1	5400.0	14.0	0.07
CH2	2400.0	6.0	1.10	18.0	200.0	31.0	47.0	4.0	360.0	<0.1	8100.0	18.0	0.08
CH3	2800.0	7.1	3.40	22.0	340.0	65.0	59.0	5.0	950.0	1.0	9600.0	19.0	0.11
CH4	2600.0	8.0	2.10	26.0	280.0	48.0	51.0	6.0	580.0	<0.1	9300.0	17.0	0.09
CH5	1200.0	4.1	0.60	13.0	81.0	15.0	35.0	2.0	210.0	<0.1	4900.0	10.0	0.04

Total Metals (mg/kg)	AI	As	Cd	Cr	Cu	Pb	Mn	Ni	Zn	Ag	Fe	V	Hg
CH6	2400.0	5.9	1.10	20.0	190.0	29.0	50.0	4.0	350.0	<0.1	9000.0	16.0	0.07
95% UCL	2707.0	7.3	2.4	23.1	281.0	49.9	57.5	5.2	675.2	0.75	9409.0	18.4	0.10
Median	2400.0	6.2	1.1	19.0	195.0	30.0	50.5	4.0	355.0	0.50	8550.0	16.5	0.08
Mean	2233.3	6.2	1.5	19.5	198.3	34.0	50.2	4.0	438.3	0.58	7716.7	15.7	0.08
Std Deviation	571.5	1.3	1.1	4.4	100.4	19.4	8.9	1.4	288.0	0.20	2057.0	3.3	0.02
Nearshore Placeme	Nearshore Placement Area												
NPA1	480	2	<0.1	12	6	1	25	<1	3	<0.1	600	3	<0.01
NPA2	440	2.4	<0.1	11	7	1	24	<1	2	<0.1	520	2	<0.01
NPA3	400	2.3	<0.1	10	5	1	25	<1	2	<0.1	510	3	<0.01
NPA4	360	2.2	<0.1	9	5	1	25	<1	2	<0.1	480	3	<0.01
NPA5	460	2.3	<0.1	11	6	1	29	<1	2	<0.1	610	3	<0.01
Median	420.0	2.3	-	11.0	6.0	1.0	25.0	-	2.0	-	520.0	3.0	-
Mean	423.3	2.3	-	10.7	5.8	1.0	26.7	-	2.2	-	540.0	2.8	-
Std Deviation	44.6	0.2	-	1.0	0.8	0.0	3.1	-	0.4	-	52.5	0.4	-

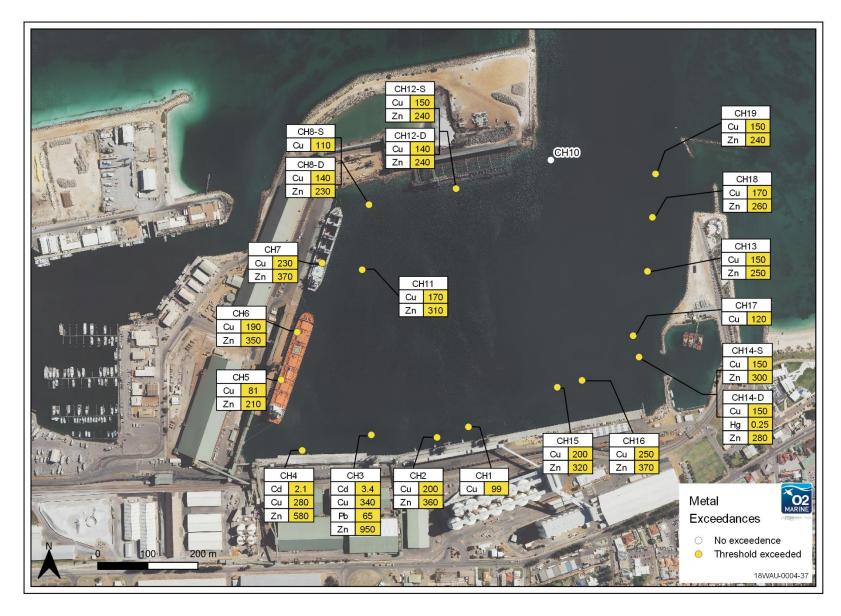
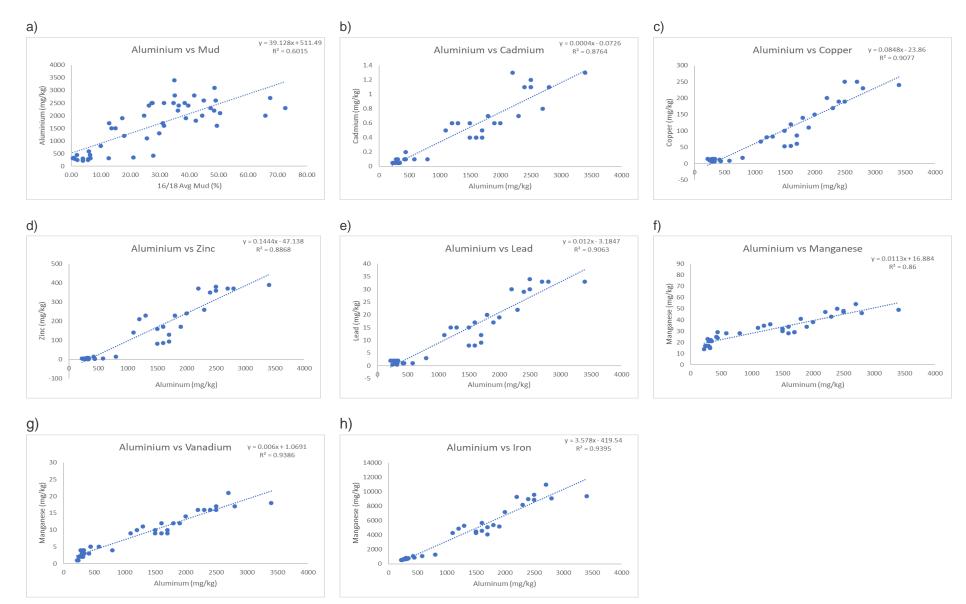



Figure 3-6 Spatial extent of metals and TBTs which exceeded the DGV and SGV, respectively.

Figure 3-7 Linear regression showing strong correlation between concentrations of Aluminium and a) proportion of muds (clays and silts), b) cadmium, c) copper, d) zinc, e) lead, f) manganese, g) vanadium and h) iron.

3.3.3. Comparison of Data with Ambient Baseline Concentrations

In accordance with the SAP, metal concentrations exceeding screening levels or for metals with no screening levels were normalised against reference sites to allow comparison with ambient baseline concentrations. The enrichment classifications are based on the SAP (O2M 2019) and are presented in **Table 3-6**.

As there are no identified contamination sources, comparison with ambient baseline concentrations was not calculated for the nearshore placement area.

Probably Clean - Channel Sediments

Enrichment Factor (EF) results for 'Probably Clean' sediments with no screening guidelines reported above LoRs range between 'No Enrichment' to 'Minor' for iron and manganese and "No Enrichment' for vanadium.

Probably Contaminated - Inner Harbour Sediments

EF results for 'Probably Contaminated' sediments with no screening guidelines reported above LoRs range from 'No Enrichment' for manganese and vanadium, to 'Minor' for iron. Cadmium exceeds the DGV level at CH3 reports 'Moderately Severe' enrichment, with remaining sites ranging between 'Minor' to 'Moderate'. Lead exceeds the screening level at site CH3 but was not normalised in accordance with the SAP due to anthropogenic contamination occurring at this location. Copper exceeds the DGV level at all sites and ranges between 'Minor' to 'Moderately Severe' enrichment. Zinc exceeds the DGV level at sites CH2 to CH6 and recorded EFs from all sites between 'Severe' and 'Extremely Severe'.

Suspect - Inner Harbour Sediments

EF results for 'Suspect' sediments with no screening guidelines reported above LoRs correspond to 'No Enrichment' for manganese and vanadium, with iron ranging from 'No Enrichment' to 'Minor'. Copper exceeds the DGV at all sites except CH10, and records EFs for all sites, including CH10, between 'Minor' to 'Moderate'. Except for three sites, zinc exceeds the DGV with corresponding EFs all reporting 'Severe'. Mercury exceeds the DGV at one site (CH14-D), although similar for lead above no normalising calculations were undertaken in accordance with the SAP due to the potential for anthropogenic influences.

Table 3-6Aluminium normalisation classifications for determining the enrichment factor of parameters at sites
which either exceed the DGV value, or there were no guideline values (except Mn). Enrichment Level -
No Enrichment (NE), Minor (Mi), Moderate (Mo), Moderately Severe (MS), Severe (S), Very Severe (VS),
Extremely Severe (ES). Bold, red font indicates DGV exceedances from Table 4-7.

Site	Cd	Cu	Pb	Mn	Zn	Fe	V	Hg			
Probably Clean –	Probably Clean – Channel										
NC1	-	-	-	NE	-	NE	NE	-			
NC3	-	-	-	NE	-	Mi	-	-			
NC5	-	-	-	Mi	-	Mi	-	-			
NC7	-	-	-	NE	-	Mi	NE	-			
NC9	-	-	-	NE	-	Mi	NE	-			
NC11	-	-	-	NE	-	Mi	NE	-			
NC13	-	-	-	Mi	-	Mi	NE	-			
NC17-1	-	-	-	NE	-	Mi	NE	-			
NC18	-	-	-	Mi	-	Mi	NE	-			
NC19	-	-	-	NE	-	Mi	NE	-			
Suspect – Inner H	larbour										
CH7	-	Мо	-	NE	S	Mi	NE	NE			
CH8-S	-	Mi	-	NE	S	Mi	NE	NE			
CH8-D	-	Мо	-	NE	S	Mi	NE	NE			
CH10	-	Mi	-	NE	MS	Mi	NE	NE			
CH11	-	Мо	-	NE	S	Mi	NE	NE			
CH12-S	-	Мо	-	NE	S	Mi	NE	NE			
CH12-D	-	Мо	-	NE	S	Mi	NE	NE			
CH16	-	Мо	-	NE	S	Mi	NE	NE			
CH17	-	Мо	-	NE	S	Mi	NE	NE			
CH18	-	Мо	-	NE	S	Mi	NE	NE			
CH19	-	Мо	-	NE	S	Mi	NE	NE			
Probably Contam	inated - Inne	r Harbour									
CH1	Mi	-	-	NE	-	Mi	NE	-			
CH2	Mi	-	-	NE	-	Mi	NE	-			
CH3	MS	-	-	NE	-	Mi	NE	-			
CH4	Мо	-	-	NE	-	Mi	NE	-			
CH5	Mi	Мо	Мо	NE	VS	Mi	NE	-			
CH6	Mi	Мо	Мо	NE	S	Mi	NE	-			

3.3.4. Elutriate Metals

Elutriate metals were collected and analysed in accordance with the SAP (O2M 2019), with results presented in **Table 3-7** and raw data provided in **Appendix B**.

The LoR for copper was insufficiently low to provide comparison with the 99% SPL. However, ANZG (2018) guidelines classify port areas as *slightly to moderately disturbed* ecosystems, indicating the 99% SPL is not required to be met within inner harbour sites.

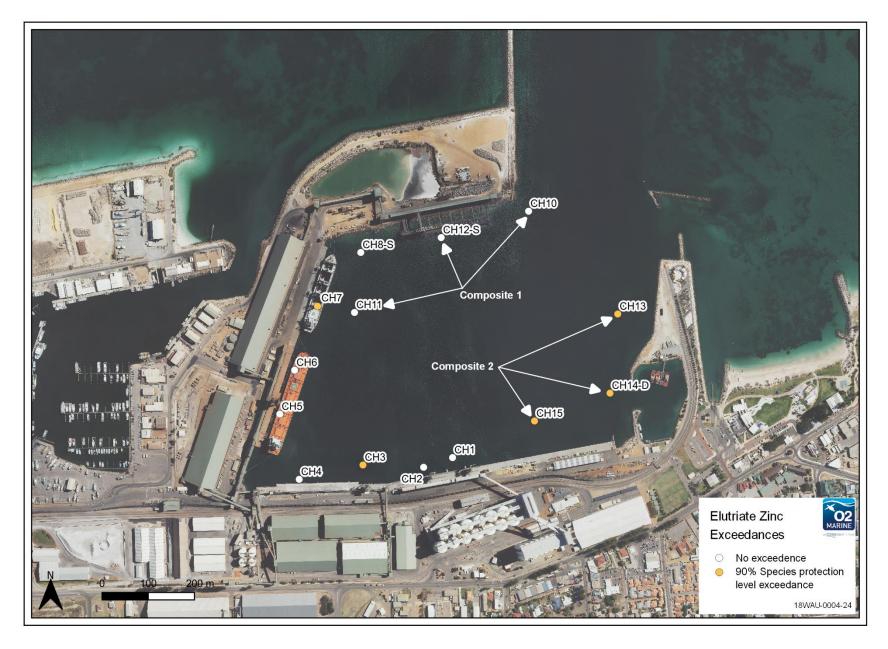

Dissolved metal concentrations for cadmium, copper and lead are below the laboratory LoRs for all analysed samples. Dissolved zinc concentrations range between 0.007 mg/L to 0.032 mg/L in the 'Probably Contaminated' dredge sediments, with one value exceeding the 90% SPL and two exceeding the 95% SPL. Dissolved copper concentrations from the four 'Suspect' sites and composite samples are all below the LoR. Zinc elutriate concentrations in two samples (CH8 & CH13-15) are above the 90% SPL, and the third sample (CH10-12) below the 95% SPL.

Figure 3-8 spatially displays the sites which exceeded the SPLs (95% and 99%) for zinc.

Table 3-7 Elutriate concentrations for metals which exceeded screening levels or were above ambient background levels. Red indicates 90% trigger exceedances.

Dissolved Metal (mg/L)	Cd	Cu	Pb	Zn					
99% SPL	0.0007	0.0003	0.0022	0.007					
90% SPL	0.014	0.003	0.0066	0.023					
LoR	0.0001	0.001	0.001	0.001					
Probably Contaminated – Inner Harbour									
CH1	-	<0.002	-	NA					
CH2	-	<0.002	-	0.021					
CH3	<0.0002	<0.002	0.001	0.032					
CH4	<0.0002	<0.002	-	0.015					
CH5	-	<0.002	-	0.007					
CH6	-	<0.002	-	0.019					
Suspect – Inner Harbour									
CH7	-	<0.002	-	0.26					
CH8-S	-	<0.002	-	-					
Composite 1	-	<0.002	-	0.009					
Composite 2	-	<0.002	-	0.025					

3.3.5. Bioavailable Metals

Bioavailable metals were collected and analysed as outlined in the SAP (O2M 2019) and as presented in **Table 2-2**. Bioavailable metals results are presented in **Table 3-8** and raw data are provided in **Appendix B**.

Bioavailable concentrations of cadmium, copper and lead are all below the laboratory LoR. Bioavailable zinc concentrations for 'Probably Contaminated' and 'Suspect' sites are below the DGV value ranging between 2 mg/kg and 8 mg/kg.

Bioavailable Metal (mg/kg)	Cd	Cu	Pb	Zn						
DGV	1.5	65	50	200						
LoR	0.1	1	1	1						
Probably Contaminated –	Probably Contaminated – Inner Harbour									
CH1	-	<1	-	-						
CH2	-	<1	-	2						
CH3	<0.1	<1	<1	3						
CH4	<0.1	<1	-	5						
CH5	-	<1	-	8						
CH6	-	<1	-	6						
Suspect – Inner Harbour										
CH7	-	<1	-	4						
CH8-S	-	<1	-	-						
Composite 1	-	2	-	4						
Composite 2	-	2	-	2						

Table 3-8	Bioavailable metal results which exceeded screening levels or were above ambie	ماميرما المتبيع سيام مطاغم
1 able 3-8	Bioavailable metal results which exceeded screening levels of were above ample	nt background levels.
1 41010 0 0	Biodranabio motal recardo minen exceedada concenting lettere en mere aborte ambre	int baoligi o'ana io ioioi

3.4. Nutrients

3.4.1. Nutrients in Sediments

Results from nutrients analysis in sediments are presented in **Table 3-9**. Results indicate that total nitrogen (TN) solely consist of organic forms, typically represented by ~100% total kjeldahl nitrogen (TKN) with very small contributions of ammonia. Nitrate and nitrite are not present in sediments from Berth 3-6 with all results detected below the LoRs. TKN ranges from 870 mg/kg (CH6) to 2,300 mg/kg (CH2 and CH3). Phosphorous ranges between 370 mg/kg (CH7) to 710 mg/kg (CH1).

Site	Phosphorus	Total Nitrogen	Total Kjeldahl Nitrogen	NOx-N
Units		mg/kg		
LoR	1	10	10	1
CH1	710	2,300	2,300	<1
CH2	610	2,300	2,300	<1
CH3	490	1,400	1,400	<1
CH4	450	1,300	1,300	<1
CH5	400	910	910	<1
CH6	380	870	870	<1
CH7	370	1,400	1,400	<1
CH8	380	1,200	1,200	<1

Table 3-9 Nutrient concentrations in sediments from Berth 3, 4 5, and 6 sample locations

3.4.2. Nutrients in Porewater

Results from nutrients analysis in sediments are presented in **Table 3-10**. All detections exceed the adopted DGV for all parameters. Results for nitrate and nitrate are low, with only one real detection at CH2. Ammonia was quite variable with results ranging from 0.06 mg/L (CH7) to 29 mg/L (CH1). FRP results are all very low ranging between 0.03 mg/L (CH7) to 0.94 mg/L (CH1). Interestingly, ammonia and FRP results for CH1 and CH2 show a high level of variability, considering they are sampled from the same shipping pocket at Berth 3.

Table 3-10	Nutrient concentrations in sediment porewaters from Berth 3, 4 5, and 6 sample locations. Red font
	indicate exceedances of the DGV.

Site	Nitrite-N	Nitrate-N	Ammomia-N	Filterable Reactive Phosphorus
Units			mg/L	
DGV	0.005	0.005	0.005	0.005
LoR	0.01	0.01	0.02	0.01
CH1	<0.01	<0.01	29	0.94
CH2	0.44	0.35	0.79	0.04
CH3	<0.01	<0.01	11	0.15
CH4	<0.01	<0.01	7.5	0.11
CH5	<0.01	0.04	7.9	0.15
CH6	0.04	0.05	3.9	0.06
CH7	0.01	0.34	0.06	0.03
CH8	0.04	0.16	1.2	0.24

3.5. QA/QC Assessment

3.5.1. Laboratory Assessment

The laboratory quality control report and the laboratory QA/QC compliance assessment report are provided in **Appendix D**. The findings of these results determined:

- > No Method Blank outliers occur;
- > No Duplicate outliers occur;
- > No Laboratory Control outliers occur;
- > No Matrix Spike outliers exist;
- > No Surrogate recovery outliers exist;
- > All samples were submitted and tested within analysis holding time compliance; and
- > The number of QC samples was tested in accordance with or greater than guidance provided in NEPM (2012).

No results were qualified as unusable during the data review process.

Matrix spike recoveries were not determined for Aluminium and Iron in one (1) interlaboratory split samples (TRIP-S2) due to the background level being greater than or equal to four times the spike level. NAGD (2009) recommends matrix spike data should not be reported if the naturally occurring levels in the sample are greater than twice the spiking level. Therefore, the matrix spike recoveries for Aluminium and Iron can be omitted from reported results.

3.5.2. Field QA/QC

The Relative Standard Deviation (RSDs) for field split and triplicate samples are presented in **0**.

No field split samples for metals returned RSD results >50% for the three split samples collected. Calculated RSDs ranged from 3-50%. One exceedance were calculated within the nutrient RSD calculations, although this was a result of differing laboratory detection limits combined with low level detection. This resulted in a proportionally higher RSD when assessing low level results. The secondary laboratory test result for TBT at CH8 and CH3 (0.25 & 2.2 μ gSn/kg) is outside the accepted range of the primary result (2.8 & 12 μ gSn/kg), with an RPD of 167% and 138%, respectively. The secondary laboratory test result for TOC at CH8 and CH3 (<1 & 1.1%) is also outside the accepted range of the primary result (1.2 & 1.9%), with an RPD of 82% and 52%, respectively. The secondary results for moisture at three sites (CH8, CH2, CH3) are within the accepted range. It should be noted that TBT and TOC sampling at CH3 used a composite sample from three replicates and therefore represents comparison against a replicate sample rather than a true split duplicate. TBT can be highly variable when present due to the scattering nature of paint flakes within sediments. Whilst results for TOC are also outside the accepted range, the difference between <1% and 1.2% may be very minor from the split sample and results are only just outside acceptable levels for the replicate at CH3, which largely identifies a large proportional difference between two small values (i.e. 2 is 100% greater than 1).

Field triplicates collected from the same site, at the same location, are all typically within the accepted range for RSDs (<50%). Non-exceeding RSDs ranged from 0-39%.

No results were qualified as unusable during the data review process due to and RPDs or RSDs not being met. These results provide confidence that the primary laboratory and field procedures were of acceptable quality for all elements from which meaningful conclusions can be drawn.

4. **Discussion**

4.1. **Preliminary Site Investigation**

As detailed in the SAP, the preliminary site investigation reviewed previous sediment assessments and historical data sources to identify contaminants of potential concern and classify the likely current status of accumulated sediments. The SAP identified three classifications for the proposed dredge material in accordance with the NAGD (2009) and included the following:

- > 'Probably Contaminated' sediments occurring within the Berth 3, 4 and 5 pockets;
- Suspect' sediments which occurred primarily within the north-western and south-eastern corners of the inner harbour, including the Berth 6 and 7 pockets; and
- > 'Probably Clean' sediments which occurred in high spots along the NC edges.

The preliminary site investigation reviewed three key sources of historical sediment information which included previous dredge sediment assessments, routine Licence compliance surveillance monitoring and the terrestrial contaminated sites Detailed Site Investigation. With respect to the historical findings and historical and current port related activities, the site was typically divided between the Navigational Channel (NC) and Commercial harbour (CH). No contaminants of potential concern (CoPC) were identified within NC sediments, however PASS was identified from most samples, with the acid neutralising capacity considered sufficient to neutralise the acid producing ability. The following contaminants were identified as CoPC within the CH:

- > Metals;
- > TBTs, and
- > Acid sulphate soils.

The purpose of this detailed sediment site investigation was to determine the extent of current contaminant concentrations to inform maintenance dredge management plans, primarily with respect to environmental impact assessment and management.

4.2. **Detailed Site Investigation**

A detailed site investigation of sediments within the CH and NC was implemented in accordance with the SAP between 16-18 June 2019, 18-20 February 2020 and 23 and 24 March 2021. Only minor deviations from the SAP (O2M 2019) occurred as described within **Section 2.** The selected methodologies were considered successful with the exception of core refusal occurring at most NC sites due to the unconfined surficial sediments becoming compacted over time below approximately 40 cm.

In addition, samples were collected from the nearshore MPA during 12 May 2021. Samples were collected from the sites identified in **Section 2**, which deviated from those presented in the SAP.

A summary of the results from the detailed site investigation is described below.

4.2.1. Sediment Properties

Surficial sediment characteristics typically vary primarily due to location. NC samples are characterised by a high degree of uniformity across sample sites, typically dominated by yellow to grey, fine to medium sands (\overline{x} >91%). Inner harbour sediments are more variable with three distinct sediment types occurring with respect to their location within the CH. Sediments within the CH but occurring near the entrance to the channel were generally similar to NC sediments dominated by yellow to grey, fine to medium sands. Sediments within the north-west CH comprise medium fine silty sands, typically grey, brown or dark grey, whilst in the south-east of the harbour sediments are fine silty sands, typically grey to dark grey. All CH samples comprised a greater silt proportion (range 34.3-62.8%) when compared to NC sediments (range 1.9-17.5%) and much lower proportions of fine to medium sand, which range between 22.5-58.2% and 78.7-96.6%, respectively. Sediment samples of the north-western corner of the harbour contained a higher percentage of sand ($\overline{x} = 53.5\%$) and lower percentage of silt ($\overline{x} = 36.6\%$) compared with the south-eastern sediment samples, with averages of 29.4% and 58.8%, respectively. Sediments comprised very low proportions of gravel or clay sized particles across the study area with combined averages lower than 1.05% and 6%, respectively. Samples from the nearshore placement area are typically yellow-light brown medium to fine sands, very similar in observable appearance to the NC samples. PSDs for these sediments were dominated by medium sand sized particles, with fine sands being the second dominant by proportion. No observable fauna was identified.

These results suggest that the NC sediments are most likely to have originated from natural sources such as coastal silicate sands transported to the channel via localised northern longshore drift, or marine carbonate sediments transported via oceanic currents and swell. Vessel traffic are primarily considered responsible for the current pattern of accumulation occurring along the channel edges due to the effects of ship and tug propulsion blasting the channel center, causing unconsolidated sediments to become trapped along the steep channel walls. The sediments at the nearshore placement area are typically comparable with those within the NC, suggesting they are of a similar origin. Slightly greater PSDs at the nearshore placement area suggests the finer particles are continuously being mobilised by waves and currents which enter the littoral drift and migrate northwards or temporarily deposited on coastal beaches. Medium sands require slightly higher energy to mobilise, hence are greater by proportion at the Nearshore MPA.

Within the CH, sediments comprising a greater proportion of finer particles are likely to be a result of positioning in relation to Champion Bay along with previous dredging and port related bulk loading activities. The northwards facing aspect of the harbour mouth facilitates minimal migration of naturally sourced marine sediments, such as those characteristic of the NC, which typically drift from south to north. Previous dredge campaigns have also contributed to the fines present through the crushing and grinding of hard substrate and coarser particles into finer particles, a mechanism typically associated with previous capital dredging. Spillages and windblown dust from loading perorations would also contribute fines to the sediments within the CH. Within the CH, the two distinct differences in sediment characteristics are likely a result of altered tug and ship propeller mechanisms associated with turning vessels, (resulting in the finest particles migrating to the south-east) and standard vessel mooring activities which result in remaining sediments accumulating within the deeper berth pockets. Routine sediment sampling results identify consistency with PSDs for the north-west corner in this investigation, whilst identifying similar characteristics for sediments within the Berth 3, 4 and 5 shipping pockets (O2M 2018).

4.2.2. Tributyltin

TBTs were collected and analysed from all eight 'Suspect' and three 'Probably Contaminated' sites. No exceedances were recorded from 'Suspect' sediments. The 95% UCL of the means exceeded the adopted SQG at 'Probably Contaminated' sites, with two of the three sites also exceeding this level. TBTs were identified within the SAP (O2M 2019) to be collected at 50% of the sites due to the recent routine monitoring program recording no DGV exceedances across Berths 3, 4 and 5. However, DGV exceedances were recorded during 2016 (Berth 3 – two sites) and 2014 (Berth 3 – two sites; and 4 – one site). The overall trend for these berths upon review of the long-term historical data indicates a decreasing trend in TBT contamination.

Subsequent elutriate testing was conducted at three locations within the 'Probably Contaminated' sites with all results being below the Laboratory LoR and the 95% SPL. Therefore, it is uncertain from this investigation that the contamination risk profile of TBT present from the 'Probably Contaminated' sediments is commensurate, in fact lower, than the level awarded *moderately to slightly disturbed ecosystems* (ANZG 2018). However, the Laboratory detection level applied was above the 99% SPL (0.0004 µgSn/L) and therefore the level of risk TBTs pose to marine organisms if they were to be seadumped at an offshore location awarded this level of protection is uncertain from this study. Further investigation into the existing environment of the proposed sea-dump location, along with metocean conditions would require further assessment to determine the actual risk.

It should also be noted there was a considerable difference between the primary and secondary laboratory for the QA/QC samples CH3 and CH8, with associated RSDs outside of the acceptable range (138% and 167%, respectively). TBTs are typically highly variable within substrates due to their association with paint flakes, rather than a more consistent binding with finer sediment particles (as is typically the case for metals). This often leads to significant inter-site variation in results between replicate samples and temporally during routine surveys as identified within the long-term historical dataset from Licence compliance sampling.

4.2.3. Acid sulphate Soils

A total of 14 samples from the CH (eight from 'Suspect' and six from 'Probably Contaminated') and seven from the NC were analysed for chromium reducible sulphur in accordance with the SAP (O2M 2019). All CH samples and one NC sample exceeded the DER (2015) reduced inorganic sulphur action criterion of 0.03%, on average by 13-fold within CH samples. In accordance with recommendations from DER (2015), if the concentration meets or exceeds the 'action criteria', an acid sulfate soil management plan should be prepared for DWER.

To determine the net acidity of the PASS sediment samples, quantitative laboratory analyses for PASS was undertaken to measure the net effect of acid-generating processes in the sediment, balanced against acid-neutralising (or basic) components that may be present. The results indicate that the potential acidity of these sediments are effectively buffered from the acid neutralising capacity (ANC), and therefore there would be a negative net acidity following disturbance of these sediments. These findings are similar with a previous investigation by GHD (2011) with the exception that this investigation identified a lower number of exceedances of the S_{cr} action criteria within the NC. GHD (2011) concluded that there was sufficient ANC, even using a conservative 10% estimate, to maintain a net negativity acidity. Terrestrial based ASS investigations undertaken by Coffey (2017) assessed the reclaimed dredge material previously analysed in-situ by GHD (2011). Results from Coffey (2017) were

comparable to GHD (2011) observing no AASS, PASS and there is sufficient ANC to maintain net negative acidity. S_{cr} exceeded the DER action criteria at two from six samples, suggesting PASS was present. Net acidity was reported below the LoR (<0.02 %S) for eight samples suggesting no ASS impacts had occurred from these sediments. It must be noted however, that these sediments were specifically placed below the water table within the reclaim cell to ensure no oxygenation of PASS could occur, thus reducing the ability for these soils to acidify. Coffey (2017) also concluded that potential acidity of these dredge material are sufficiently buffered from the ANC.

It is recommended that either relocation to a designated and approved sea-dumping site or burial below the water table within the existing Berth 7 reclaim pond are considered as suitable placement options for CH sediments.

As the DER action criteria for all sites within the CH and one site within the NC is exceeded, an Acid Sulphate Soils Management Plan will need to be developed and approved by the Department of Water and Environmental Regulation prior to any dredging activities occurring.

4.2.4. Metals and Metalloids

Comparison of the 95% UCLs of the means against adopted screening levels identified no exceedances for any metals from any of the samples analysed from the NC or nearshore MPA, whilst copper and zinc exceeded within both the 'Suspect' and 'Probably Contaminated' location designated within the CH. Screening exceedances occurred for total cadmium (two sites), copper (16 sites), lead (one site), mercury (one site) and zinc (14 sites) within the CH. All concentrations for total metals were below the relevant HILs and EILs with the exception of the low level EIL established for zinc (three sites).

In accordance with NAGD (2009), if the 95% UCL of a contaminant exceeds the specified screening level, comparison to natural background concentrations is required. O2M (2018) identified distinct differences within the grain sizes of inner harbour sediments and the sites used for routine monitoring reference locations. Normalisation against aluminium was therefore undertaken to allow for comparison with ambient background levels. Due to potential (unconfirmed) historical anthropogenic aluminium inputs within the south-eastern corner of the CH and confirmed anthropogenic inputs of copper, zinc and lead (O2M 2016, 2017, 2018 and 2019b) within the Berth 3 and 4 shipping pockets normalisation from sites CH13-CH15 and metals copper, lead and zinc from CH1-4 were not undertaken.

Normalisation of metals for screening level exceedances returned results between 'minor' to 'extremely severe', except for one mercury exceedance which was deemed 'No Enrichment'. In accordance with the NAGD, normalised results identified further assessment of bioavailability and elutriate concentrations for most samples will be required to determine environmental contaminants of potential concern for placement of the material. Metals without screening levels all returned values below 'minor', which is considered acceptable within the guidance of ANZG (2018) for a slightly to moderately disturbed ecosystem, such as a Port harbour or approved sea dumping location.

Assessment for dissolved concentrations (elutriates) and bioavailability (using dilute acid extraction (DAE)) was undertaken for cadmium (two samples), copper (10 samples), lead (one sample) and zinc (eight samples). Zinc exceeded the 95% SPL at one site within each of the 'Probably Contaminated' and 'Suspect' designated areas and the 90% SPL at two sites both within the 'Probably Contaminated' area. Bioavailability assessed using DAE identified zinc as the only metal recording a concentration above the LoRs but retained an average concentration (all sites tested) of 4.25 mg/L, significantly lower than the DGV screening level. These results indicate that during dredging there may be some release

of zinc bound to sediments into the surrounding marine environment, however the bioavailability of zinc available for uptake by marine organisms is extremely low. Other metals, as assessed, will have extremely low potential to cause any adverse environmental impacts during the proposed dredging project. Due to the level of dilution that the CH receives through tidal and swell generated water exchange, the dissolved zinc concentrations as assessed under laboratory conditions, along with the bioavailability assessment, is unlikely to pose any significant risk to marine organisms or long term water quality during, or post, the proposed dredging program.

These results are considered to be similar, albeit with typically lower concentrations and numbers of exceedances to GHD (2011). The GHD (2011) investigation undertook elutriate and bioavailability analysis on all CH samples collected and identified elutriate exceedances for copper, nickel and zinc, whilst copper, lead and zinc exceeded screening levels for bioavailable concentrations, with the 95% UCL of the mean for lead also exceeding the screening level. These sediments were placed into the Berth 7 reclaim which has since been subject to a terrestrial detailed site investigation including soil and groundwater assessed of metals. This investigation identified elevations of zinc above the EILs in two soil samples and elevations of dissolved cobalt (two sites), lead (3 sites) above the 95% SPL and copper (two sites) above the 90% SPL in groundwater (Coffey 2015). Follow up site investigations determined the concentrations of copper in groundwater would need to be >100 mg/L to result in 10 ug/L concentrations within the CH marine environment using dilution factors as described in Coffey (2017). Based upon groundwater monitoring results conducted at the Berth 7 reclaim, Coffey (2017) concluded 'the contribution of groundwater copper concentrations to the marine environment is considered to be negligible, and therefore poses no unacceptable risk to the marine environment of the Commercial Shipping Harbour. It should be noted that these reports have both been subject to a full audit and acceptance by an accredited Contaminated Sites Auditor acting on behalf of MWPA.

Based upon the lower concentrations of dissolved metals and associated bioavailable concentrations identified during this investigation, compared with 2011, the use of the CH sediments for land based reclamation is unlikely to pose any additional risk to the marine environment within the CH or the surrounding higher-value waters of Champion Bay. These sediments are also within the acceptable levels required for sea-dumping at an appropriate and approved location.

4.2.5. Nutrients

Nitrogen

Nitrogen within sediments occur almost entirely in organic forms, with no detections of nitrite/nitrate above LoRs. Nitrogen concentrations were typically highest at Berths 3, 4 and 6 which is commensurate with handling activities for import and export of fertilisers which occurs at these Berths. Nitrogen concentrations and spatial distribution results are highly comparable with GHD (2015) which reported TKN ranging between 1,300-2,200 mg/kg, compared with 1,200-2,300 mg/kg from this investigation at the same sites.

Nitrogen within porewater are considerably lower than sediment concentrations, however all detections exceeded the DGV applied. However, the DGV applied is not considered appropriate for a modified Port environment, rather being applicable to natural, undisturbed environments. The proportionately lower results for inorganic nitrogen in porewater compared to organic nitrogen forms in sediments support nitrogen typically occurring as particulate, and from anthropogenic sources (i.e. fertilisers). Furthermore, this demonstrates that either the denitrification processes acting on the particulate

nitrogen are suitably slow, or dilution factors suitably large, that there are low concentrations within porewaters, and likely even lower concentrations in the adjacent water column.

Nitrogen concentrations, and relationships between nitrogen forms, within porewaters are also comparable to the groundwater results and characteristics presented within Coffey (2015). Concentrations of NOx and ammonia are typically comparable, with ammonia being more variable in both investigations. The distribution of nitrogen forms within groundwater indicate a similar relationship, typically occurring as organic forms identifying a anthropogenic source, and slow denitrification processes or high dilution factors occurring to explain low inorganic concentrations. However, a nutrient flux study (Coffey 2017) determined that whilst high level of nitrogen occur within groundwater the nitrogen flux, or annual export of nitrogen between groundwater and the marine environment is not sufficient to cause adverse impacts related to poor water quality from nitrogen enrichment within the water column.

Based upon these results there is a very low risk of marine environmental impacts posed by relocation of sediments into the Berth 7 reclaim area, or if relocated to an offshore disposal area due to high dilution factors which would be applied within the water column significantly reducing any water column concentrations.

Phosphorous

Total phosphorous concentrations in sediments are highest at Berth 3, with typically declining concentrations from Berth 4 to Berth 6 where the lowest concentration was reported. Phosphorus concentrations in sediments, and their spatial distribution from this investigation are highly comparable to GHD 2015. The concentration of phosphorus in sediments is also comparable to results obtained from 3.5 m below the surface at the Berth 7 reclaim, commensurate with where inner harbour sediments have been placed in the past.

FRP results within porewaters follow a similar spatial pattern as sediments with highest results reported at Berth 3 and lowest at Berth 6. Concentrations, and spatial pattern are typically comparable with GDH (2015) and indicate that phosphorous, like nitrogen, typically are occurring as particulates, rather than dissolved within porewaters. FRP concentrations within porewaters are typically within the range identified in groundwater at the existing reclaim area (Coffey 205).

Based upon these results there is a very low risk of marine environmental impacts posed by relocation of sediments into the Berth 7 reclaim area, or if relocated to an offshore disposal area due to high dilution factors which would be applied within the water column significantly reducing any water column concentrations.

4.2.6. QA/QC Assessment

Review of the laboratory and field QA/QC outputs identified that no results collected during the detailed site investigation were qualified as being unusable during the data review process.

All laboratory QA/QC compliance assessments met necessary recommendations except matrix spike recoveries for Aluminium and Iron in one (1) interlaboratory split sample. These were not determined due to the background level being greater than or equal to four times the spike level. NAGD (2009) recommends that matrix spike data should not be reported if the naturally occurring levels in the sample are greater than twice the spiking level. It was considered unlikely that gross errors have occurred

during the laboratory testing procedure which has significantly affected interpretation of the results, particularly as aluminium and iron results (at routinely samples sites CH1-CH8) were comparable with historical results.

The RSD of ±35% for field splits and ±50% in field replicates were considered acceptable, with RSDs only exceeded by a few parameters. All field replicates for assessed metals were within the acceptable range for each of the three samples, with only silver, mercury, TBT and TOC recording RSDs greater than 35% in field splits. Analysis of the exceedances concluded that these results should be used as a guide during interpretation, however the overall data for the program are of sufficient quality for the purposes and objectives of this sample program.

4.3. Suitability of Material for Onshore Placement

The dredge material has not yet been identified for a particular placement methodology. The purpose of this investigation is to categorise the material and identify environmentally acceptable placement options through which MWPA can apply to dredge management planning and guide the required approvals as determined by the finalised scope. MWPA has several available options through which the dredge material can be either re-used (land reclamation or sustainable relocation) or via identification and assessment of an appropriate sea placement site.

4.3.1. Suitability of Sediments for Onshore Placement

The 2011 maintenance dredge program identified land-based placement of all dredge material from sediments accumulated with the CH and NC within the Berth 7 reclaim pond as the most suitable option. The 2002/2003 capital dredge project also utilised the reclaim for placement of 'contaminated' sediments below the water table and some channel sediments to 'cap' the lower lying CH sediments (URS 2001). The Berth 7 reclaim was designed purposely during the 2002/2003 capital dredge and Port upgrade project to aid in land reclamation required to construct a seventh berth, increase lay down space and for securing the placement of harbour sediments in an environmentally sensitive manner. This investigation has determined that with respect to contaminants, harbour sediments are characterised by a lower risk profile than during the early 2000s investigations (ATA 2000, URS 2001) and prior to the 2012 maintenance dredge program (Oceanica 2010a; 2010b, GHD 2011). TBT elutriate waters which may return into the harbour are also consistent with the SPL awarded to the harbour (ANZG 2018). Acid sulphate soils are consistent with findings from GHD (2011) for the CH, with NC sediments currently posing a lower risk. Analysis of acid sulfate soils undertaken during the project determined samples from each area exceed the action criterion of 0.03%S for managing acid sulfate soils, indicating PASS sediments are present within the material to be dredged. In accordance with recommendations from DER (2015), an acid sulfate soil management plan should be prepared for submission to DWER for the proposed dredge project. However, quantitative laboratory analyses for PASS indicate the natural acid neutralising capacity of the sediment samples provide sufficient buffering for acid-generating processes, and treatment (i.e. lime dosing neutralisation of ASS) for excavated sediment is unlikely to be required. Therefore, the material is considered suitable for onshore placement. Coffey (2017) confirmed that while PASS is present within the Berth 7 reclaim soils (previous dredge material), no ASS currently exists and there is sufficient ANC within these soils to buffer acid generation. Coffey (2017) further concluded that disturbance or dewatering would provide suitable conditions for oxidation potentially resulting in acidification of groundwater and any such disturbance should be managed through an acid sulfate soil management plan.

It is therefore recommended that all identified dredge material are suitable for land-based reclamation within the Berth 7 reclaim pond.

4.3.2. Suitability of Sediments for Sustainable Relocation

For the purposes of re-usage of dredge material as sustainable relocation for coastal resilience several factors need to be considered. These include the suitability relevant to sediment contaminants, the methods and location selected for placement and the potential impacts to marine ecosystems through placement and dispersion. This investigation specifically deals with the suitability of sediments to be used for sustainable relocation based upon physical and chemical properties as identified through the detailed site investigation. A separate environmental impact investigation would be required to determine that sustainable relocation of dredge material would not adversely affect the coastal system, or adjacent ecological communities, particularly the benthic communities and habitat, such as seagrasses.

'Probably Clean' sediments occurring within the NC have been identified as contaminant free, naturally occurring marine sediments, although with a very low potential to acidify causing ASS. If used for the purposes of sustainable relocation and not provide the opportunity to oxidate then ASS would not be of concern from these sediments. It is therefore considered that sustainable relocation, based upon physical and chemical properties of NC sediments, is a potential placement methodology.

Inner harbour sediments, with the exception of harbour entrance sites (CH10, CH13, CH18 and CH19) are significantly different to the naturally occurring sediment found at the reference locations (O2M 2018, 2019b), within the NC and the wider natural system (i.e. Champion Bay). Observed differences within physical properties, particularly physical appearance (colour and foreign material) and PSD (finer particle sizes), are characteristic of CH sediments. Finer particle sizes characteristic of these sediments would behave differently when subjected to the same metocean conditions (i.e. dispersion, coastal migration) and the darker greys and browns potentially able to create undesirable aesthetics compared with naturally occurring marine sediments. Elevated dissolved zinc above the 99% SPL and the uncertainty of dissolved copper (due to LoRs above 99% SPL) would be typically unsuitable for relocation to a *High Ecological/Conservation Value System* (ANZG 2018) such as the coastal zone along the foreshore and northern beaches of Geraldton. The impacts of relocation of sediments containing high levels of metals, elevated TBTs and dissolvable metals also creates a social risk to Port Authority that would need to be carefully assessed and considered if elected for this re-use category.

Sites located at the entrance to the shipping channel (CH10, CH13, CH18 and CH19) would be considered suitable for sustainable relocation. They have been identified as contaminant free, naturally occurring marine sediments, although with a very low potential to acidify causing ASS. If used for the purposes of sustainable relocation and not provide the opportunity to oxidate then ASS would not be of concern from these sediments. Total copper and zinc were detected in these sediments, though when tested for elutriates and bioavailability zinc is of any concern for marine water quality. Given the significant dilution occurring with combining the sediments with the NC sediments, and waves and currents at the disposal site, there is a very ow risk any exceedances of the 99% SPL for marine water quality would occur from the sediments. It is therefore considered that sustainable relocation, based upon physical and chemical properties of these sediments, is a potential placement methodology.

Based upon the assessment contained within this investigation NC sediments are suitable for sustainable relocation for coastal stability purposes, however CH sediments are not recommended for this purpose.

4.3.3. Suitability of Sediments for Offshore Placement

For the purposes of this assessment the principles and requirements of the NAGD (2009) were specifically integrated and implemented into this detailed site investigation to ensure the suitability of sea-dumping classification was assessed for all sediments. Based upon the Preliminary Site Assessment outlined within the SAP and the results presented within this report, with the exclusion of TBTs (elevated total and elutriates above the 99% SPL) which require further assessment to inform their specific risk for offshore placement, all physical and chemical properties reported and discussed provide suitable justification for the suitability of sea-dumping as an option for all three sediment categories.

It should be noted however, that whilst sediments are deemed suitable for sea-dumping, this report does not provide this recommendation based upon any level of environmental impact assessment as is required for referral under the Environmental Protection Act 1986 or to obtain a sea-dumping permit. These recommendations are exclusively based upon the contaminant properties reported and discussed within this report.

5. Conclusion

Channel sediments were characterised as medium to fine grained, yellow to grey sediments of natural origins such as coastal silicate sands transported to the channel via localised northern longshore drift, or marine carbonate sediments transported via oceanic currents and swell. Inner harbour sediments were similar physically to those within the channel at the harbour entrance, however, were slightly finer in Berths 3-7 pockets and finer again in the south-eastern corner. Appearance ranged from grey to dark grey and brown throughout the berth pockets and the south-eastern corner.

Channel sediments were assessed as contaminant free, which is consistent with previous channel sediments assessments. 'Suspect' sediments contain total copper, zinc and mercury (one site only) above the DGV levels with 95% UCLs of the means exceeding for copper and zinc. 'Probably Contaminated' sediments contain total cadmium (two sites, copper (all sites), lead (one site) and zinc (five sites) above the DGV screening levels with 95% UCLs of the means exceeding for copper and zinc. Normalised raw data identified 'Moderate' or higher levels of enrichment for cadmium, copper, lead and zinc occurring within the inner harbour.

Elutriate (dissolved metals) analysis identified exceedances of the screening levels for zinc only within inner harbour sediments. All bioavailable concentrations, as assessed via dilute acid extraction, are below the screening guideline for all sites within the inner harbour, with only copper and zinc detected above LoRs.

TBTs normalised to 1% total organic carbon exceed the screening level at two from three sites within the Berths 3,4 and 5 shipping pockets. Subsequent assessment undertaken on three samples from the 'Probably Contaminated' sites CH4, CH5 and CH6 were analysed for elutriate TBTs. All results were reported below the laboratory LoR and the 95% recommended for moderately disturbed ecosystems (ANZG 2018).

The potential for sediments to produce acid sulphate soil was assessed through laboratory analysis of the sulfur reducible chromium suite. Action level criteria exceedances occur at all inner sites and one channel sites. The results indicate that the potential acidity of these sediments are effectively buffered from the acid neutralising capacity (ANC), and therefore there would be a negative net acidity following disturbance of these sediments. However, as the DER (2015) action criteria was exceeded an Acid Sulfate Soils Management Plan will need to be developed, submitted and approved by the Department of Water and Environmental Regulation prior to project commencement.

Inner harbour sediments were analysed for nutrients at Berth 3-6. Nitrogen and phosphorus results indicate that they exist typically as particulates, with proportionately lower concentrations occurring in porewaters. Concentrations and characteristics were typically similar to previous nutrient investigations indicating little to know change over time, as well as porewater concentrations being comparable current groundwater concentrations within the existing reclamation area. These results indicate that sediments are not changing over time, and therefore will pose no further risk to marine environmental quality through relocation into the reclaim. It is also arguable that due to sufficient dilution factors applicable within the open ocean these concentrations could be suitable for ocean disposal, however, due to other considerations, these sediments are identified for land reclamation.

Based upon the assessment of sediment sampling results presented within this report the following options for dredge material placement are available for MWPA to further assess during project scoping and related environmental impact assessment:

- > Beneficial re-use through sustainable relocation for coastal resilience
 - Channel and harbour entrance sediments only
- > Placement within the Berth 7 reclaim pond
 - All dredge material
- > Sea Dumping
 - All dredge material management consideration required for elutriate TBTs from 'Probably Contaminated' sediments due to insufficient data to assess impacts for 99% SPL required at sea dumping locations.

5.1. **Recommendations**

This investigation identified the following recommendations:

- > Any consideration for offshore sea-dumping of "Probably Contaminated' sediments will require further risk assessment for elutriate TBTs based upon environmental and metocean consideration at the selected material placement site.
- > Due to the potential for historic anthropogenic inputs associated with the closed vessel slipway and vessel maintenance facility once located within the south eastern corner of the inner harbour, lithium is likely to be a better normalising element rather than aluminium for future surveys.
- > Any land reclamation activities using sediments from the NC or CH will require an Acid Sulfate Soils Management Plan.

6. Reference List

- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, National Water Quality Management Strategy No. 4 & 7
- ATA 2000. *Geraldton Port Sediment Sampling Results October 1999.* Report prepared by Alan Tingay and Associates for Geraldton Port Authority.
- Coffey 2015. *Midwest Ports Authority, Detailed Site Investigation Geraldton Port.* Report prepared by Coffey Services Australia Pty Ltd for Mid West Ports Authority.
- Coffey 2017. *Midwest Ports Authority, Geraldton Port Groundwater Risk Assessment.* Report prepared by Coffey Services Australia Pty Ltd for Mid West Ports Authority.
- DER 2015. *Identification and investigation of acid sulfate soils and acidic landscapes*. Government of Western Australia Department of Environment Regulation.
- Environmental Protection Authority (EPA) (2005). Manual of Standard Operating Procedures for Environmental Monitoring against the Cockburn Sound Environmental Quality Criteria: A supporting document to the Draft State Environmental (Cockburn Sound) Policy.
- GHD (2011) Geraldton Port Authority. Report for Maintenance Dredging Project 2011 Implmenetation of Sediment Sampling and Analysis Plan 2011. Report prepared for the Geraldton Port Authority, August 2015.
- GHD (2015). Geraldton Port 2015 Sediment Compliance Monitoring 2015 Metals and Metaloids Survey. Report prepared for the Mid West Ports Authority, July 2015.
- GHD (2015a). *Midwest Ports Authority Sediment Nutrient Analysis.* Report prepared for the Mid West Ports Authority, June 2015.
- Midwest Ports Authority (MWPA) (2018). 2018 Sediment Sampling Program Sampling and Analysis Program. 13 March 2018
- NAGD (2009) National Assessment Guidelines for Dredging, Commonwealth of Australia, Canberra, 2009.
- O2 (2016). *Geraldton Port Annual Sediment Compliance Survey 2016.* Report prepared by O2 Marine for Mid West Ports Authority.
- O2 (2017). *Geraldton Port Annual Sediment Compliance Survey 2017.* Report prepared by O2 Marine for Mid West Ports Authority.
- O2 (2018). *Geraldton Port Annual Sediment Compliance Survey 2018*. Report prepared by O2 Marine for Mid West Ports Authority
- O2 (2019). 2019 Sediment Baseline Characterisation Sample and Analsyis Plan. Report prepared by O2 Marine for Mid West Ports Authority.

- O2 (2019b). *Geraldton Port Annual Sediment Compliance Survey 2018*. Report prepared by O2 Marine for Mid West Ports Authority.
- Oceanica 2010a. Geraldton Port Channel Maintenance Dredging Dredging Environmental Impact Assessment. Report prepared by Oceanica for Geraldton Port Authority, August 2010.
- Oceanica 2010b. Geraldton Port Harbour Maintenance Dredging Dredging Environmental Impact Assessment. Report prepared by Oceanica for Geraldton Port Authority, August 2010.
- URS 2001. Port Enhancement Project and Preporatory Works for Town Beach Foreshore Redeveloment. Report prepared by URS for Geraldton Port Authority, November 2001.

Appendix A Sample Chain of Custody Forms

Chain of Custody (CoC) Record

Project:	Geraldton Port Bas			dress		46	-48 Ba	anksia f		RL	POOL,	WA, 63	106		Please Note: Please sign copy on receipt of samples and email signed copy of CoC record to O2M		
Client:	Midwest Ports Authority	Job No.:	18WAU-0004		Lab. Co							Rogers					Project Manager.
Lab Quote No.:	O2M160419Rev1	Turnaround Time:	round Time: Standard					Email laboratory analysis results to O2M Project Manager.									
O2M Project	Russell Stevens	Email Address:		Sample Matrix Sludge / W-Water / A-Air	Glass / P-		1	Cu, Pb,	Level	E	ur suite		ution	tion		~	
Manager	(0447 465 009)	russell.stevens@c	2marine.com.au	e / W.	pe I / G-GI Bag	of Sample:	Total Volume (mL)	cd, Cr, 4	Mercury - total - Low Level	otins - TBT	I Sulphi	TOC	Particle Size Distribut	Dilute Acid Extractio	Elutriate	Chrystalography	
					Ty /V-Vial B-E	No. of S	tal Voli	Al, As, (Zn, Ag,	ry - tot.	Organot	um Rec	DI	le Size	te Acid	Eluti	hrystal	
O2M Sample ID	ID ID	Date	Time	S-Soil / SL	Type 3-Bottle / J-Jar / V-Vial / G-Gi 8-Bag	-	To	Trace Metals (AI, As, Cd, Cr, Cu, Zn, Ag, Fe, V)	Mercu	0	Chromium Red Sulphur		Partic	Dilu		0	Comments
NC1	1	17/06/2019	3:30	s	1J, 2P	3	500	x	x		x		х				All soil samples are marine sediment
NC3-S	2	17/06/2019	2:30	S	1J, 2P	3	500	х	x		x		х				Shading indciates sample shared with
NC5-S	3	17/06/2019	1:45	S	1J, 2P	3	500	x	x		x		х				Geraldton Port Compliance Sediment
NC7-S	4	16/06/2019	4:00	S	1J, 2P	3	500	x	х		x		х				Sampling 2019 - Shared tests (i.e. total metals only required to be tested once bu
																	reported seperately for both programs as
NC9	5	16/06/2019	3:15	S	1J, 2P	3	500	X	x		x		х		-		indicated)
NC11	6	16/06/2019	2:40	S	1J, 2P	3	500	x	x		х		х				
NC13	7	16/06/2019	2:00	S	1J, 2P	3	500	x	x		x		х				X - Undertake Analysis
CH1-1	8	18/06/2019	8:50	S	1J, 1P	2	250	x	x		x			н			H - Hold sample - do not analyse
CH1-2	9	18/06/2019	8:50	S	1J, 1P	2	250	x	x					Н			
CH1-3	10	18/06/2019	8:50	S	1J, 1P	2	250	x	x					Н			
CH2-1	11.000	18/06/2019	9:15	S	2J, 1P	3	400	X	X		Х			Η	н		
CH3-1	12	18/06/2019	10:00	S	2J, 1P	3	400	X	X		х			н	н		
CH4-1	13	18/06/2019	10:15	S	2J, 1P	3	400	X	X		X		-	H	н		
CH5-1	14	17/06/2019	11:30	S	1J, 1P	2	250	X	X		x			н		_	
CH5-2	15	17/06/2019	11:30	S	1J, 1P	2	250	X	X					Н			
CH5-3	16	17/06/2019	11:30	S	1J, 1P	2	250	X	X					Н			
CH6-1	17	17/06/2019	11:00	S	1J, 1P	2	250	X	X		x		-	н			
CH7-1	18	17/06/2019	9:55	S	2J, 1P	3	400	X	X		X			н	H		
CH8-1	19	17/06/2019	10:15	S	2J, 1P	3	400	X	X		X			H	H		
CH8-D	20	17/06/2019	10:15	S	3J, 2P	5	900	X	X	X	X	X	х	н	H		
CH10-1	22	17/06/2019	8:45	s	2J, 1P 1J, 1P	3	400 250	x x	x		X			H	н		
CH10-2	23	17/06/2019	8:45	S	1J, 1P	2	250	×	x					H			
CH10-3	24	17/06/2019	8:45	S	3J, 2P	5	900	×	x	x	x	x	x	н	н		
CH11	25	18/06/2019		S	3J, 2P	5	900	x	x	x	x	x	x	н	н		
CH12-S	26	17/06/2019	9:10	S	3J, 2P	5	900	x	x	x	~	x	x	н	н		
CH12-D CH13	27	17/06/2019 17/06/2019	9:10	S	3J, 2P	5	900	x	x	x	x	X	x	н	н		
CH13 CH14-S	28	18/06/2019	11:30	s	3J, 2P	5	900	x	x	x	x	x	x	н	н		
CH14-S CH14-D	29	18/06/2019	11:30	S	3J, 2P	5	900	x	x	x		x	x	н	н		
CH14-D CH15	30	18/06/2019	12:00	S	3J, 2P	5	900	x	x	x	x	x	x	н	Н		
DUP-4	. 31	17/06/2019	11:30	S	1)	1	200	x	x						-		
DUP-5	32	18/06/2019	9:15	S	1J	1	200	x	x								
TRIP-S1	33	17/06/2019	10:15	S	บ	1	200	x	x							-	
TRIP-S2	34	18/06/2019	9:15	S	บ	1	200	x	x								
TRIP-S3	35	18/06/2019	10:00	S	1J	1	200	x	x								
RINSB	36	18/06/2019	12:30	W	บ	1	200	x	x								
TRIPB	37	18/06/2019	12:35	S	IJ	1	200	x	x								
Sampled By:	R. Stevens		R. Stevens Date/Time: 19/06/2019 120		00hrs	Relinquished By: R. Stevens											
Received By Lab:			Date/Time:								Ce	ourier:					
Sample Cold (Yes/No):		Sample Cor	ntainer Sealed (Yes/No):														

Chain of Custody (CoC) Record

			Laboratory: ARL												Please Note: Please Note:			
Project:	Geraldton Port Ba	seline Sediment Char 2019	acterisation Sampling		Ad	ldress:	46-48 Banksia Road, WELSHPOOL, WA, 6106										Please sign copy on receipt of samples and email signed copy of CoC record to O2M	
Client:	Midwest Ports	Job No.:			Lab. Contact:						Kim F	Rogers		Project Manager.				
chent.	Authority	JOD NO.:	18WAU-0004	4 / A.		ntaine	rs		4			Analyse					Email laboratory analysis results to O2M	
Lab Quote No.:		Turnaround Time:	Standard	Sample Matrix SL-Sludge / W-Water / A- Air	Type B-Bottle / J-Jar / V-Vial / G- Glass / P-Plastic / B-Bag	ples	(mL)	, As, Cd, i, Zn, Ag,	Fe, V) Mercury - total - Low Level	TBT	nium Red Sulphur suite		ribution	action		phy	Project Manager.	
Manager (04	(0447 465 009)	Email Address: russell.stevens@o2	marine.com.au	Sample I SL-Sludge Ai	Type e / J-Jar / / P-Plastic	No. of Samples	Total Volume (mL)	ce Metals (Al, As, Cd, Cu, Pb, Mn, Ni, Zn, Ag, Fe, V)		Organotins - TBT		TOC	Particle Size Distributi	Dilute Acid Extraction	Elutriate	Chrystalography		
O2M Sample ID	Laboratory Sample	Date	Time	Sam S-Soil / SL-SI	B-Bottle / . Glass / P.	ź	Tot	Trace h Cr, Cu, I	Mercur	Or	Chromi		Particle	Dilut		5	Comments	
NC2-S	38	17/06/2019	3:00	S	1J, 2P	3	500	н	Н		н		н				All soil samples are marine sediment	
NC4-S	39	17/06/2019	2:00	S	1J, 2P	3	500	Н	н		Н		н				Shading indciates sample shared with	
NC6-S	40	16/06/2019	3:45	S	1J, 2P	3	500	н	н		н		н				Geraldton Port Compliance Sediment	
																	Sampling 2019 - Shared tests (i.e. total	
NC8	41	16/06/2019	3:30	S	1J, 2P	3	500	н	н		н		н				metals only required to be tested once bu reported seperately for both programs as	
NC10	42	16/06/2019	3:00	S	1J, 2P	3	500	н	Н		н		Н				indicated)	
NC12	43	16/06/2019	2:15	S	1J, 2P	3	500	н	н		н		н					
NC14	44	16/06/2019	1:45	S	1J, 2P	3	500	н	н		н		н				X - Undertake Analysis	
																	H - Hold sample - do not analyse	
														×				
Sampled By:	R. Stev	R. Stevens Date/Time:		19/06	/2019 120	Ohrs	Relinquished					d By:	By: R. Stevens					
Received By Lab: Sample Cold (Yes/No):		Date/Time: Sample Container Sealed (Yes/No):			Courier:													

Chain of Custody (CoC) Record

Project	Garaldta	n Port C			atory:				ARL			Please Note:		
Project:	Geraldton Port Compliance Sediment Sampling 2019					Ad	dress:	46-48	Banks	ia Roa	d, WEL	SHPOO	DL, WA, 6106	Please sign copy on receipt of samples an email signed copy of CoC record to O2M
Client: Lab Quote No.: O2M Project Manager O2M Sample ID	Midwest F		Job No.:	18WAU-0004		Lab. Co			Kim Rogers Project Manager.					
	Authority O2M160419Rev1		Turnaround Time:	Standard	/ A-Air		ntaine	rs			Ana	lyses		Email laboratory analysis results to O2M Project Manager.
	Russell Ste (0447 465		Email Address: russell.stevens@o2	marine.com.au	/ W-Water	ial / G-Glas 3-Bag	nples	ne (mL)	lutriate Cd	lutriate Cu	lutriate Pb	lutriate Zn		
	Laboratory S ID	Sample	Date	Time	S-Soil / SL-Sludge / W-Water / A-Air	Type B-Bottle / J-Jar / V-Vial / G-Glass / P- Plastic / B-Bag	Plastic / B-Bag No. of Samples	Total Volume (mL)	Bioavailable + Elutriate Cd	Bioavailable + Elutriate Cu	Bioavallable + Elutriate Pb	Bioavailable + Elutriate Zn		Comments
CH1-1	19-0963	21-13	18/06/2019	8:50	S	2J	2	400		х				All soil samples are marine sediment
CH2-1	. (/	-16	18/06/2019	9:15	S	2J	1	400		х		х		
CH3-1	n	-19	18/06/2019	10:00	S	2J	1	400	x	х	х	х		
CH4-1	ų	-22	18/06/2019	10:15	S	2J	1	400	x	x		x		
CH5-1	2,	-25	17/06/2019	11:30	S	2J	1	400		x		X		
CH6-1		-28	17/06/2019	11:00	S	2J	1	400		X		x		
	ii ii	-49	17/06/2019		S	23	1	400		x		x		
CH7-1	4	-52		9:55	S	2J	1	400		x		^		
CH8-1	4	-)2	17/06/2019	10:15	3	ZJ	T	400		^				
										_		-		
		-			_									
	-													
							-							
								-					-	
									_		-			
							2							
				`										
			-										1	
										-				
Sampled By:	~	R. Stevens Date/Time:				18/06/201	19				Reline	quishe	d By:	R. Stevens
Received By Lab:	hind	1 Jel	1	Date/Time:	Ale	TIA						Co	urier:	N Stevens
Sample Cold (Yes/No):	tya	000		er Sealed (Yes/No):	90	11								

-. . . . -

Chain of Custody (CoC) Record

Project:	Geraldte	on Port Sediment Sar	npling 2019	~	Labor Ad	atory: dress:		26 Riga		ALS , Wang ,ustrali		A 6065	Please Note: Please sign copy on receipt of samples and email signed copy of CoC record to O2M
Client:	Midwest Ports	Job No.:	18WAU-0004		Lab. Co					en Bia	gioni		Project Manager.
:	Authority	Turnaround		A-Air		ntainer	s	а Ма		Anal	yses .		Email laboratory analysis results to O2M Project Manager.
Lab Quote No.: O2M Project	18P164v1 Russell Stevens	Time: Email Address:		latrix V-Water /	/ G-Glass lag	2	(Iml)	cu, Ph. H a. V)	ow Level	TBT	metals		
Manager	(0447 465 009)	russell.stevens@o2	marine.com.au	apte M dge / V	Type /V-Vial tic/B-B	No. of Samples	ołume	As, Cd, , Ag, Fe	otal - 1	Organotins - TBT	(lable r	ğ	
2M Sample ID	Laboratory Sample ID	Date	Time	Sample Matrix S-Soil / SL-Sludge / W-Water / A-Air	Type B-Bottle / J-Jar / V-Vial / G-Glass / P- Plastic / B-Bag	No. o	Total Volume (mL)	Trace Metais (Al, As, Cd, Cu, Ph, Hg, Mg, Ni, Zn, Ag, Fe, V)	Mercury - total - Low Level	Organ	Bioavallable metals		Comments
TRIP-S1	1	17/06/2019	10:15	5	1J, 1P	2	250	x	х	x	н	x	All Soil samples are marine sediment
TRIP-52	2	18/05/2019	9:15	S	1J, 1P	2	250	х	X	X	н	X	H - Hold sample - do not analyse
TRIP-S3	3	18/06/2019	10:00	S	1J, 1P	2	250	X	X	X	н	X	De la la cometala l OPat
									L				Required trace metals LORs: Arsenic, Cadmium, Silver 0.1 mg/kg,
											L		Aluminium 10 mg/kg
													Chromium 0.2 mg/kg
					1	++	1	1	1	1			Copper, Lead, Nickel, Zinc 1 mg/kg
		++				╆─┼	+	1	1	-			Mercury 0.01 mg/kg
	<u> </u>	<u> </u>				++	+	+	1		-	+	
					+	+					+	+ + + + + + + + + + + + + + + + + + + +	
							+		+	+	<u>+</u>		
								- <u> </u>	<u> </u>		+		
	-				<u> </u>			-	ļ			+	
		1							<u> </u>	.			
						T		Ţ		1			
										1			
					-		+	1	1		-		
			· · · · · ·				-		+	+			
									+				
				l					+			++	
									<u> </u>			+	
					ļ		_						
										_			
i				1					1	_			
				1									
<u>·</u>				†	-	-+-+							
				+						-	+	+	
			· · · · · · · · · · · · · · · · · · ·						+		+		
								+-	+				
				1		-+					+		
i				4						_			
				1									
				<u> </u>						 Re	lingui	shed By:	D. Staurage
Sampled B		Stevens	Date/Time	1.34	06/2019				~			Courier:	R. Stevens
Received By La Sample Co	101-02-		Date/Time	L+1	-6-19		<u>.</u> 40)					
Sample Co (Yes/No				. 1	yes.								

Telephone: + 61-8-9406 1301

X OZ MARINE

Chain of Custody (CoC) Record

					I										Page 1 of 2
					Laboratory:	ίλο				ALS	S				Please Note:
Project:	Geraldton Port Co	Geraldton Port Compliance Sediment Sampling 2020	t Sampling 2020		Address:	ess:		56	26 Rigali Way, Wangara WA 6065 Australia	Vay, Wange Australia	angara alia	WA 60	65		Please sign copy on receipt of samples and email signed copy of CoC record to 02M
Client	Midwest Ports	Job No.:	18WAU-0004		Lab. Contact:	act				Lauren Biagioni	Siagion				Project Manager.
	Authority	-		t	Container	ainers		+		٩ [Analyses	<u>_</u>	ŀ	+	Email laboratory analysis results to O2M
Lab Quote No.:		Furnaround Time:	Standard	tiA-A \ 19ft	-d / उप्रस				•	(saty)		uoi		sti	Project Manager.
02M Project	Russell Stevens Inda7 A65 0091	Email Address: rissell stevens@o2marine.com.au	marine.com.au		59/1P	səjdu				ENA 81)		លផ្ទារផ្ទេ	\$18L	01 + sle	
O2M Sample ID		Date	Time	agouis-12 / IIos-2	947 7 V.V / 1st / Jat / V.V 8 Jat / 1st / Jat / 1st /	rež to .cM	Trace Metals (A) As, 45, 45, 6	Ni, Zn. Ag. (Niercury - total		brebried2 - HA9	100	Particle Size D	ətsirtul3	and attauls	Comments
ORA1-1	-	20/02/2020	1125	s	2J,2P	4	1000	×	×	×	×	×			All soil samples are marine sediment
ORA1-2	2	20/02/2020	1130	s	2J, 2P	4 1	1000	×	×	×	×	×			
DRA1-3	~	20/02/2020	1140	s	2J, 2P	4	1000	×	×	×	×	×		-	
ORA2-1	÷	20/02/2020	1200	s	2J, 2P	4	1000	× ×	×	×	×	×	-	_	
ORA2-2	5	20/02/2020	1205	s	21, 2P	4	1000	××	×	×	×	×		-	Minimum required trace metals LCRs:
ORA7-3	9	20/02/2020	1210	s	2J, 2P	4	1000	×	×	×	×	×			Arsenic, Cadmium, Silver 0.1 mg/kg,
FBH1-1	(18/02/2020	1100	s	2J, 2P	4	1000	×	×	×	×	×			Alumintum 10 mg/kg Chromium 0.2 mg/kg
FBH1-2	~	18/02/2020	1110	s	2J, 2P	4		×	×	×	×	×			Lithium, Copper, Lead, Nickel, Zinc 1 mg/kg
FBH1-3	S	18/02/2020	1120	s	2J, 2P	4	1000	x x	×	×	×	×			Iron 10 mg/kg
FBH 2-1	9	18/02/2020	1030	s	2J, 2P	4	1000	×	×	×	×	×			
FRH2-2		18/02/2020	1040	s	21, 2P	4	1000	××	×	×	×	×			
5 CH83	17	18/02/2020	1050	s	2J, 2P	4	1000	××	×	×	×	х		_	
CH1-1	13	19/02/2020	1050	S	4J,2P	 ف	200	×	×	×	×	x	×		
C-EH2	t	19/02/2020	1100	s	21, 2P	4	1000	×	××	×	×	×		-	
CH1-3	15	19/02/2020	1115	S	21, 2P	4	1000	×	×	×	×	×			
CH3-1	16	20/02/2020	1050	s	2J, 2P	4	1000	×	×	×	×	×			
	1	20/02/2020	1055	s	21, 2P	4	1000	×	x	×	×	×			
CH2-3	13	20/02/2020	1100	s	21, 2P	4	1000	×	х х	×	×	×			
CH3-1	a	20/02/2020	940	s	21, 2P	4	1000	×	××	×	×	×			
C-FH2	20	20/02/2020	950	s	2J, 2P	4	1000	×	×	×	×	×			
CH3-2	21	20/02/2020	1000	s	2J, 2P	4	1000	∩ ×	×	×	×	×			
CH41	27	20/02/2020	006	ŝ	41,2P	9	1500	×	X X	×	×	×	×		•
CH4-2	22	20/02/2020	915	s	2J, 2P	4	1000	×	××	×	×	×			
CH4-3	24	20/02/2020	920	2	2 1, 2P.	4	1000	^ ×	×	×	×	×			
CH5-1	S	18/02/2020	1710	S	21, 2P	4	1000	~ ×	××	×	×	×			
CH5-2	26	18/02/2020	1715	s	21, 2P	4	1000	×	-		×	×		+	
CH5-3	27	18/02/2020	1720	~	21, 2P	4	1000	×	×	\rightarrow	×	×	_	+	
CH6-1	28	18/02/2020	1630	s	4J, 2P	9	15:00	×	×	×	×	×	×	+	
CH6-2	29	18/02/2020	1640	s	2J, 2P	4	100D	×	× ×	×	×	×			
- THE	8	18/02/2020	1645	S	2J, 2P	4	1000	×	×	×	×	×			
1-917	- 	18/02/2020	1745	s	21, 2P	4	1000	×	×	×	×	×			
C-0HJ	27	18/02/2020	1800	~	21, 2P	4	1000	×	××	×	×	×		-	
CH9-3	2	18/02/2020	1810	v	21, 2P	4	1000	×	××	×	×	×			
Sampled By:			Date/Time:		24/02/2020 1200	802			Re	Relinquished By:	hed By				R Stevens
Received By Lab:	12/21	0000	Date/Time:		1:000	٤	8				Courier:				
Sample Cold	12	Sample Cont	Sample Container Sealed	_)							l			
(Ves/No):	10.1											_	_		

Environmental Division Perth Work Order Reference EP2001971

Telephone: + 61-8-9406 1301

	_										į				•	
Project:	Geraldton Port Co	Geraldton Port Compliance Sediment Sampling 2019	t Sampling 2019		Adv	Address:						000			-	Please sign copy on receipt of samples and
			0			ľ		46-4;	46-48 Banksia Road, WELSHPOOL, WA, 6106	a Road	WELSI	IPOOL,	WA, 61	<u>ا ج</u>	<u> </u>	email signed copy of CoC record to 02M Project Manager.
Client:	Midwest Ports	Iob No.:	18WAU-0004		Lab. Contact:					Ę.	Kim Rogers	8			Τ	
	Authority			νiΑ-A	Š	Containers		-	F	+	Analyses	ses L		F		Email laboratory analysis results to 02M
Lab Quote No.:	O2M160419Rev1	Turnaround Time:	Standard	khik Vales /		5						noitud	sj	\$181 ·		Project Manager.
02M Project Manager	Russell Stevens (0447 465 009)	Email Address: russell.stevens@o2marine.com.au		w / əşb		aldwes)	ı) əmtilo			1 - antro 	201		LOT adai	+ sletsM	юрэвди	
02M Sample ID	Laboratory Sample ID	Date		n(S-15 / ((05-5 185	-() abro8-8 -() abro8-8 I-9) 22613	.o 'oN		Trace Metals Pb, Mn, N	1 - γτυστελλέ 	nagro briat2 - HAG		is abther	4 713	etettoi3	3 bioA stulk)	Comments
CH19-1	4 24	19/02/2020	1140	5	2J, 2P	4	1000	×	×	××	×	×				All soil samples are marine sedimert
CH10-2	32	19/02/2020	1145	5	2J, 2P	4	1000	×	^ ×	×	×	×				
CH10-3	36	19/02/2020	1150	S	2J, 2P	4	1000	×	^ ×	××	××	×				
VM1-1	37	18/02/2020	1200	s	2J, 2P	4	1000	×	×	××	×	×				
YM1-2	38	18/02/2020	1210	S	2J, 2P	4	1000	×	^ ×	××	×	×				
YM1-3	30	18/02/2020	1215	S	21, 2P	4	1000	×	×	×	××	×				
TB1-1	40	18/02/2020	1300	s	21, 2P	4	1000	X	×	×	x x	×				
TB1-2	4	18/02/2020	1305	s	21, 2P	4	1000	×	^ ×	×	X X	×		,		
TB1-3	47	18/02/2020	1310	s	21, 2P	4	1000	×	×	×	×	×				
CS1-1	12	18/02/2020	1500	s	23, 2P	4	1000	×	×	×	×	×				
C4-2		18/02/2020	1510	Ś	2J, 2P	4	1000	×	×	^ ×	x	×			-	
CS1-3	AL V	18/02/2020	1515	S	21, 2P	4	1000	×	×	×	×	×				
CS2-1	4	18/02/2020	1530	s	21, 2P	4	1000	×	×	×	×	×			-	
C-0-2	62	18/02/2020	1535	S	2J, 2P	4	1000	×	×	^ ×	××	×				
CS2-3	48	18/02/2020	1545	s	2J, 2P	4	1000	×	×	^ ×	××	×				
CH7-1	49	19/02/2020	1000	s	2J, 2P	4	1000	×	-	_	×	×				
CH7-2	Ş	19/02/2020	1005	s	21, 2P	4	1000	×	×	×	×	×			-	
CH7-3	5	19/02/2020	1015	\$	2J, 2P	4	1000	×	×		× ×	-				
CH8-1	52	19/02/2020	920	s	2J, 2P	4	1000	×	×	×	××					
CH8-2	23	19/02/2020	065	S	2J, 2P	4	1000	×	×	×	×	×				
CH8-3	5	19/02/2020	935	s	21, 2P	4	1000	×	×	×	×	×				
DUP-1	5	18/02/2020		Ś	2J, 2P	4	1000	×	×	×	×				·	
DUP-2	<u>56</u>	18/02/2020		Ś	2J, 2P	4	1000	×	×	×	~ ×	×				
DUP-3	S	19/02/2020		s	21, 2P	4	1000	×	×	×	Ŷ	×	_			
DUP-4	58	20/02/2020		s	21, 2P	4	1000	×	×			×	_			
DUP-5	۵ ک	20/02/2020		s	21, 2P	4	1000	×		-	-+	×	_			
TRIP-P1	60	18/02/2020		s	21, 2P	4	1000	×	×	×	+	×				
TRIP-P2	61	19/02/2020		S	2J, 2P	4	1000				+	×				
TRIP-P3	63	20/02/2020		Ś	2J, 2P	4		×	×	×	~ ×	×				
RINSB	63	19/02/2020		₹	38	4	1000	×	×	-	×	-				
Flutriate Water	615	20/02/2020	930	₹	2B	2	10L				-		×			
										+	-					
			Date /Times	_	0000/00	UNC.			ľ	Relinguished By:	ished B	2				R Stevens
Sampled By: Persived By Lab	* \ \ \	stevens	Date/Time:		N Pier var var						Courler	er:				
sample Cold		Sample Cont	Sample Container Sealed (Yes/No):	-			т						-			
				_											_	

	Geraldton Port Bas	eline Sediment Chara	cterisation Sampling			atory:					A	RL				Please Note:
Project:		2021			Ad	dress:		46	-48 Ba	nksia F	load, V	VELSHP	00L, 1	WA, 610	6	Please sign copy on receipt of samples and email signed copy of CoC record to O2M
Client:	Midwest Ports Authority	Job No.:	18WAU-0004		Lab. Co			1				ogers				Project Manager.
Lab Quote No.:	Autionty	Turnaround Time:	Standard	r / A-Air	-	tainer	s	Mn, Ni,	1	a.	F	naiyse	>	(d		Email laboratory analysis results to O2M Project Manager.
O2M Project Manager		Email Address: russell.stevens@o2n	arine com au	atrix / W-Wate	Slass / P-I	es	mL)	, Cu, Pb, I	w Level	18.	1	ibution	I, TP	, NH4, FR		
O2M Sample ID	Laboratory Sample	Date	Time	Sample Matrix S-Sediment / SL-Sludge / W-Water / A-Air	Type B-Bottle / J-Jar / V-Wal / G-Glass / P-Plastic B-Bag	No. of Samples	Total Volume (mL)	Trace Metals (Al, As, Cd, Cr, Cu, Pb, Zn, Ag, Fe, V)	Mercury - total - Low Level	Organotins - TBT	TOC	Particle Size Distribution	TKN, TN, Nox-N,	Porewater (NO2, NO3, NH4, FRP)		Comments
NC17-1	1	24/03/2021	9:05	S	J	2		x	x			х				All soil samples are marine sediment
NC17-2	2	. 24/03/2021	2:18	° s	J	21		x	X							•
NC17-3	3	24/03/2021	9:35	S	J	21		x	X							Required trace metals LORs:
NC18	4	24/03/2021	2:18	S	J	2		x	х			х				Arsenic, Cadmium, Silver 0.1 mg/kg, Aluminium 10 mg/kg
NC19	5	24/03/2021	9:35	S	J	2		x	х			х				Chromium 0.2 mg/kg
CH16	6	24/03/2021	9:45	S	J	2		x	х	х	x	x				Copper, Lead, Nickel, Zinc 1 mg/kg Iron 10 mg/kg
CH17	٦	23/03/2021	.11:00	S	J	2		x	х	х	х	х				Mercury 0.01 mg/kg
CH18	8	23/03/2021	10:30	S	J	2		x	х	х	x	х				
CH19	9	23/03/2021	10:45	S	J	2		x	х	х	х	х	040			
CH1-1	10	24/03/2021	10:00	S	J	3						1	х	х		
CH2-1	1(24/03/2021	10:35	S	J	3							х	x		
CH3-1	12	24/03/2021	1:45	S	J	3					2		X	x		
CH3-2	13	24/03/2021	1:45	S	J	3							X	x		
CH3-3	14	24/03/2021	1:45	S	J	3							х	х		
CH4-1	15	24/03/2021	11:15	S	J	3							х	x		
CH5-1	16	24/03/2021	11:50	S	J	3							х	x		
CH6-1	17	24/03/2021	12:15	S	J	3							Х	x		
CH7-1	18	24/03/2021	12:40	S	J	3							Х	x		
CH8-1	19	24/03/2021	1:10	S	J	3					1		х	x		
SPLIT-P4	20			S	J	3	4						х	X		
							1		-							
i al li com								-		-						
				-	-							-				
Sampled By:	R. Ste	vens	Date/Time:	23	& 24/03/2	021				Reli	nquish	ed By:		C. Lan	e	
Received By Lab:	NHar	mah	Date/Time:	25	32	4					C	ourier				
Sample Cold (Yes/No):		Sample Cont	ainer Sealed (Yes/No)				1									NA

N N	
MARINE	

Project Genation Put Summing 2021 Jakonson Addusses Jakonson Bases Note: Have N								7	Sample Container Sealed (Yes/No):	Sample Contai	-	Sample Cold
Relinquished By Oate Turnsmound Sample ID Sampling 2021 Nutrent Vingen Wikt Oros Sample ID Laboratory Turnsmound Sample ID Sampling 2021 Turnsmound Sample ID Nationstiver In Stevens International Sampling 2021 International Sampling 2021 International Sampling 2021 Nationstiver In Stevens International Sampling 2021 International Sampling 2021 International Sampling 2021 International Sample ID Oate International Sample Methy Sample ID Sample Methy Sample ID International Sample Methy Sample Methy Sample ID International Sample Methy Sample Methy S			Courler:				12	13 انن	Date/Time:		Mare	Received By Lab:
Ct. Garantizon Port Sediment Sampling 2021 Liberatory International Multiversity Port Port Registrict Way, Wanging Way		R. Stevens	elinquished By:	7			-		Date/Time:	èvens	R. Ste	Sampled By:
Genation Port Sediment Sampling 2021 Laboratory Malvest Ports Call Market Standard Market St										-		
Ct: Genetizari International Automative International Intern						$\left \right $				x .		
Ct: Gendation Port Sediment Sampling 2021 Liberatory Midness ALS: Voltages Process Notes Nutration Midness I <		_					_					
Ct: Geratition Port Sumpling 2021 Liboratory Address: 26 Right Way, Margan WA 6005 Planae Mole: Planae Mole: Planae Mole: Planae Mole: Planae Mole:	hone: - olive.	1 elept										
Geraldion Port Sediment Sampling 2021 Laboratory Address: 25 Rigal Way, Val.S Phase Rote: Australia mill wigst Ports Authority Job No.: 1 at WAU-0004 Lab. Contract Lawren Blagtoni Protee Note: Australia Prease Sign copy on neelpt of sampla protect Manager. lo:: Tumeround Authority Standard Lab. Contract Lawren Blagtoni Protee Note: Australia Protee Note: Protect Manager. ref Russell stevens@02mathic com au Laboratory Standard Standard Protect Manager. Enail laboratory analysis results to Protect Manager. ref Quarter Address: Time Standard No. of Samplas Protect Manager. u.aboratory Date Time Standard Protect Manager. Protect Manager. u.aboratory Date Time Standard Protect Manager. Protect Manager. u.aboratory Date Time Standard Protect Plant / Advert Protect Manager. u.aboratory Date Time Standard No. of Samplas Protect Plant / Advert u.aboratory Date Time Standard No. of Samplas Protect Plant / Advert u.aboratory Date Time Standard No. of Samplas Protect Plant / Advert u.aboratory		1										
Ct: Genaltion Port Seliment Sampling 2021 Laboratory Address: 26 Right Way, 26 Right Way, Australia Yas Phase Note: mill signed copy on receipt of samp ample samples nr: Midwest Ports Lab Autority Turnaround Standard Lab Contact: Larran Blagion Project Manager. nr: Midwest Ports Turnaround Standard Containers Maintee Australia Project Manager. ref Russell Sevent firmal Address: Sample ID Time Standard Free Maintee Midwest Project Manager. ref Russell Sevent firmal Address: Sample ID Time Standard Free Maintee Midwest Project Manager. ref Russell Sevent firmal Address: Sample ID Time Standard Free Project Manager. ref Russell Sevent firmal Address: Sample ID Time Standard Free Project Manager. ref Laboratory Sample ID Date Time Standard Auktority Just (VVVII) Project Manager. ref Laboratory Sample ID Date Time Standard VVVIII Project Manager. ref Laboratory Sample ID Date Time Standard VVIII Comments ref Laboratory Sample ID Stand Standard Standard	TT THAT											
All Sevens Fords All Sevens Fords All Sevens Fords Please Note: Please Please Please Note: Please Please <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-						
Geraldion Port Sediment Sampling 2021 Laboratory Address: ALS Prease Note: Address: Prease Note: Project Manager. mr Midwest Ports Authority Job No.: 13WAU-000d Lab. Contact: Laboratory Authority Authority Prease Sen coopy on receipt of samp email signed copy of CC record to mail signed copy of CC record to Midwest Ports Project Manager. Project Manager. 10: Time: Laboratory Standard Standard Authority Malyyes Email Second on receipt of samp email signed copy of CC record to Malyyes Project Manager. ect Russell Stevens Email Address: Final Address: Final Address Standard Malyyes Email Booratory Project Manager. Email Booratory analys's results to Project Manager. iaboratory Date Time Stall /SL/Sudge/WWster /AA Provewater (M02, N03, N44, FRP) Project Manager. iaboratory Date Time Stall /SL/Sudge/WWster /AA Figure /AA Provewater (N02, N03, N44, FRP) Project Manager. iaboratory Date Time Stall /SL/Sudge/WWster /AA Figure /AA Provewater (N02, N03, N44, FRP) Project Manager. iaboratory Date Time Stall /SL/Sudge/WWster /AA Figure /AA Provewater (N02, N03, N44, FRP) Project Manager. iaboratory Date Time Stall /SL/Sudge/Withe/AA <td></td>												
Let: Genaldron Port Sediment Sampling 2021 Laboratory: Address: 26 Rigil Way, Wangtan WA 6065 Please Note: Please Sign copy on recipit of samp and the standard nr: Milwest Ports Authority Job No:: 13WAU-0004 Lab. Contact: Lamon Bigioni Please Sign copy on recipit of samp analisated copy of CGC record to Standard lo:: Turnaround Standard Lab. Contact: Lamon Bigioni Project Manager. containers Containers Analyses Email borratory analysis results to Polact Manager. Please Sign copy on recipit of samp Polact Manager. containers Milwest / Address: Analyses Email borratory analysis results to Polact Manager. ger (0447 465 009) Nussell.stevens@o2marine.com.au Standard uaboratory Date Time Sample Matrix sample ID Date Time Sample Matrix sample ID Date Time Standard sample ID Date Standard Tiou Nume sample ID Standard Standard		П									-	
Lt: Geraldron Port Sediment Sampling 2021 Laboratory Address: 26 Rigail Way, Wangara WA 6065 Please Note: email signed copy of recipit of samp met Midwest Ports Please Sign copy on recipit of samp mail signed copy of CC record to mail signed copy of CC record to Time: Please Sign copy on recipit of samp sample ID Please Sign copy on recipit of samp mail signed copy of CC record to Containers Please Sign copy on recipit of samp sample ID Please Sign copy on recipit of samp recipit of samp sample ID Please Sign copy on recipit of samp sample ID Please Sign copy on recipit of samp sample Manager. Project Manager. Containers Values IStevens Enail Address: Sample ID Volume (mil) Please Sign copy on recipit of samp sample Manager. Project Manager. Project Manager. Containers Time Sample Materix Sample Materix Sample Materix Project Manager. Sample ID Date Time Sample Materix Sample Materix Project Manager. Sample ID Date Time Sample Materix Sample Materix Project Manager. Sample ID Date Time Sample Materix Sample Materix Mill Soli samples are matine sediments Comments Sample Materix Sample Sample Materix Sample Sample Sample Materix All Soli samples are matine sediment	い - 0rder - 032	1×or		-								
Laboratory Laboratory ALS Please Note: Midwest Ports Job No.: 13WAU-0004 Lab. Contact: Containers Australia Australia Please sign copy on recipit of sample copy of CoC record to 1 In:: Authority Tumaround Standard Lab. Contact: Lauren Biagion Project Manager. In:: Tumaround Standard Standard Free Free Free Project Manager. Isign (447) 465 009) Instellistevens@02marine.com.au Standard Free Free Free Free Sample ID Date Time Stoll / SL-Studge / W-Water / A-Air Free Free Free Sample ID Date Time Stoll / SL-Studge / W-Water / A-Air Free Free Free Sample ID Date Time Stoll / SL-Studge / W-Water / A-Air Free Free Free Sample ID Date Time Stoll / SL-Studge / W-Water / A-Air Free Free Free Sample ID Date Time Stoll / SL-Studge / W-Water / A-Air Free Free Free Sample ID Date Time Stoll / SL-Studge / W-Water / A-Air All Soil samples are marine sediments Sample ID Sign ID Si		Enviro										
Laboratory: ALS Please Note: Midwest Ports Job No.: 13WAU-0004 Address: 26 Rigal I Way, Wangara WA 6065 Please sign copy on reeipt of samp In:: Midwest Ports Job No.: 13WAU-0004 Lab. Contact: Lauren Biagioni Project Manager. In:: Tumaround Standard Time: Standard Project Manager. Project Manager. ett Russell Stevens Email Address: Email Signed copy of CQC record to 1 Analyses Email Signed copy of CQC record to 1 ett Russell.stevens@o/marine.com.au Standard Imme Sample Matks Project Manager. sample ID Date Time Standard Standard Provewater (NO2, NO3, NH4, FRP) Project Manager. sample ID Date Time Standard Standard Standard Project Manager. Sample ID Date Time Standard Standard No. of Samples Project Manager. Sample Nation Standard Standard Standard No. of Samples No. of Samples Project Manager. Sample Nation Standard Standard Standard No. of Samples No. of Samples No. of Samples Natin Signed Copy of CQC record to 0 Standard	nmental Divis											
ett Geraldton Port Sediment Sampling 2021 Laboratory: Address: ALS 26 Rigal Way, Wangara WA 6065 Please Note: Please sign copy on reeipt of samp email signed copy of CC record to mmany signed copy of CC record to analyses bi: Tumaround Authority 13WAU-0004 Lab. Contact: Time: Lauren Biagioni Project Manager. bi: Tumaround Authority Standard Containers Analyses Project Manager. ett Russell Stevens Email Address: Email Laboratory analysis results to Time Standard Project Manager. sample ID Date Time Standard Standard Project Manager. sample ID Date Time Standard Standard Project Manager. sample ID Date Time Standard Standard Project Manager. sample Not. Standard Standard Standard Project Manager. sample Standard Standard Standard Standard Not. Standard sample Standard Standard Standard St										-		
Laboratory: ALS Please Note: Geraldton Port Sediment Sampling 2021 Laboratory: ALS Please Note: Midwest Ports Job No.: 13WAU-0004 Lab. Contact: Variania email signed copy of CqC record to 1 No: Tumaround Standard Contanct: Lavren Biagioni Project Manager. Io: Tumaround Standard Standard Project Manager. Project Manager. ett Russell Stevens Email Address: Email Address: Email Laboratory analysis results to 1 ger (0447 465 009) russell stevens@o/2marine.com.au Sample Matrix Project Manager. Laboratory Date Time Sample Matrix Project Manager. Sample ID Date Time Social /SL-Sidger /W-Water (NO2, NO3, NH4, FRP) Project Manager. Sample ID Date Time Scial /SL-Sidger /W-Water (NO2, NO3, NH4, FRP) Project Manager. Sample ID Scial /SL-Sidger /W-Water (NO2, NO3, NH4, FRP) All Soli samples are marine sediments											1	
Ltt: Geraldton Port Sediment Sampling 2021 Laboratory: Address: ALS Please Note: Midwest Ports Job No.: 13WAU-0004 Address: 26 Rigali Way, Wangana WA 6065 Please sign copy on repipt of samp email signed copy of Cic record to in Time: avata and and Time: Lab. Contatil: Lauren Biagioni Project Manager. Ib:: Tumaround Time: Standard Contailnes Analyses email signed copy of Cic record to in Analyses Project Manager. ett Russell Stevens Email Address: Email Address: Email aboratory analys results to in Time Project Manager. sample ID Date Time Sci of Samples Project Manager. Project Manager. Sample ID Date Time Sci of Samples Protewater (NO2, NO3, NH4, FRP) Project Manager. Sample ID Date Time Sci of Samples TitRU, TN, Nox N, TP Protewater (NO2, NO3, NH4, FRP) Project Manager.	pies are manne sedimen	All Soll Sam										
Laboratory: Laboratory: Geraldton Port Sediment Sampling 2021 Laboratory: Midwest Ports Job No.: 13WAU-0004 Eett Russell Stevens Containers Ferritic (A447 465 009) Imme Sample Materix Sample Materix S-Soil / SL-Studge / W-Water / A-Air Total Volume (mL) TKN, TN, Nax-N, TP Plastite / Analyses Plastite / J-Jar / W-141/G-Glass / P- Plastite / Analyses Total Volume (mL) Total Volume (mL) TKN, TN, Nax-N, TP Porewater (NO2, NO3, NH4, FRP) Porewater (NO2, NO3, NH4, FRP) Internet				×			_	s				SPI IT-S4
Geraldton Port Sediment Sampling 2021 Laboratory: ALS Midwest Ports Job No.: 18WAU-0004 Address: 26 Rigal Way, Wangara WA 6065 Authority Job No.: 18WAU-0004 Lab. Contact: Lauren Biagioni Authority Turnaround Standard Containers Analyses Russell Stevens Email Address: Standard P. Russell Stevens Email Address: aren Biagioni V-W-Water / AcAir Standard P. Russell Stevens Email Address: aren Biagioni V-W-Water / AcAir P. Analyses V-W-Water / AcAir P. Analyses V-V-Water / AcAir P. Analyses	Comments			Porewater [NO2,	TKN, TN, P		B-Bottle / J-Jar / V Plastic		Time	Date	Laboratory Sample ID	M Sample ID
Geraldton Port Sediment Sampling 2021 Laboratory: ALS Please Note: Midwest Ports Job No.: 13WAU-0004 Address: 26 Rigali Way, Wangara WA 6065 Please sign copy on receipt of samp Midwest Ports Job No.: 13WAU-0004 Lab. Contact: Lauren Biagioni Project Manager. Authority Turnaround Standard Containers Analyses Email laboratory analysis results to a ger.				NO3, NH	lox-N, TP		-Vial / G-G / 8-Bag 		2marine.com.au	Email Address: russell.stevens@o;	Russell Stevens (0447 465 009)	OZM Project Manager
Geraldton Port Sediment Sampling 2021 Laboratory: ALS Please Note: Midwest Ports Job No.: 13WAU-0004 Lab. Contact: Lauren Biagioni Project Manager. Authority Job No.: 13WAU-0004 Containers Analyses Analyses	atory analysis results to a nager.	Project Mar		4, FRP)			ilass / P-		Standard	Turnaround Time:		Lab Quote No.:
Geraldton Port Sediment Sampling 2021 Laboratory: ALS Please Note: Midwest Ports No. 13WAIL0004 Lab. Contact: Lauren Blagioni Project Manager.	• • •		Analyses			ners	Contai					
Geraldton Port Sediment Sampling 2021 Laboratory: ALS Please Note: Address: 26 Rigsli Way, Wangara WA 6065 Please sign copy on receipt of samp Address: 26 Rigsli Way, Wangara WA 6065 Please sign copy of CqC record to 1	nager.	Project Mar	Blagioni	Lauren		Ř	Lab. Conta		18WAU-0004	Job No.:		Client:
Geraldton Port Sediment Sampling 2021 Laboratory: ALS Please Note: ALS Please Note: Als Please Note: Desce sign crow on receipt of samp	d copy of CdC record to (email signed	tralia	Aus								
	e: conv on receint of samp	Please Note	VLS Vangara WA 6065	ali Wav. V	26 Riga	8 7.	Laborato		mpling 2021	on Port Sediment Sa	Geraldt	Project:
				;	(

	Geraldton Port Ba	seline Sediment Cha	aracterisation Sampling			ratory:					A	RL				Please Note:
Project:		2019			Ad	dress:		46-	48 Bar	nksia R	oad, V	VELSHE	POOL,	WA, 610	6	Please sign copy on receipt of samples and email signed copy of CoC record to O2M
Client:	Midwest Ports Authority	Job No.:	18WAU-0004		Lab. Co			1				logers				Project Manager.
Lab Quote No.:	Autionity	Turnaround Time:	Standard	A-Air	B	ntainer	S	An, Ni,	•	*	•	analyse	•			Email laboratory analysis results to O2M Project Manager.
O2M Project Manager	Russell Stevens (0447 465 009)	Email Address: russell.stevens@ol	2marine.com.au	Aatrix W-Water /	Glass / P-PI	ples	(mL),	ćr, cu, Pb, N V)	Low Level	TBT		ribution			•	
O2M Sample ID	Laboratory Sample ID	Date	Time	Sample Matrix S-Soil / SL-Sludge / W-Water / A-Air	Type B-Bottle / J-Jar / V-Vial / G-Glass / P-Plastic Bag	No. of Samples	Total Volume (mL)	Trace Metals (Al, As, Cd, Ćr, Cu, Pb, Mn, Ni, Zn, Ag, Fe, V)	Mercury - total - Low Level	Organotins - TBT	TOC	Particle Size Distribution	Moisture			Comments
NPA1-A	21-08919-1	12/05/2021	2:55	S	J & B	2	750	x	x	х	x	х	x			All soil samples are marine sediment
NPA1-B	-2	12/05/2021	2:55	S	J & B	2	750	х	х	х	х	х	х		•	
NPA1-C	-3	12/05/2021	2:55	S	J & B	2	750	х	х	х	х	х	х			Required trace metals LORs:
NPA2	- 4	12/05/2021	2:40	S	J & B	2	750	х	X	х	X	х	х			Arsenic, Cadmium, Silver 0.1 mg/kg, Aluminium 10 mg/kg
NPA3	-5	12/05/2021	2:20	S	J & B	2	750	x	х	х	Х	х	х			Chromium 0.2 mg/kg
NPA4	- 6	12/05/2021	3:05		J & B	2	750	х	Х	Х	Х	х	х			Copper, Lead, Nickel, Zinc 1 mg/kg Iron 10 mg/kg
NPA5	-7	12/05/2021	3:15	S	J & B	2	750	х	х	х	X	х	х			Mercury 0.01 mg/kg
DUP1	-8	12/05/2021 -		S	J	1	250	x	x	х	x		х			· · · · · ·
Sampled By:	R. Ste	vens	Date/Time:	:	12/05/202	1				Relin	quishe	ed By:		R. Stev	ens	13/05/202
Received By Lab:	NH- AR	U	Date/Time:	(1	+1512	-1					Co	ourier:				
Sample Cold (Yes/No):	1.2		ntainer Sealed (Yes/No):		4										•	Pentagon

Page 1 of 2

	Geraldton Port Ba	seline Sediment Cha	racterisation Sampling		Labor	atory:				AR	L - Sub	contra	cted		100 17		Page 1 Please Note:
Project:	Schuldton i oft bu	2019	racterisation sampling		Ad	dress:					т	BA					Please sign copy on receipt of samples and email signed copy of CoC record to O2M
Client:	Midwest Ports	Job No.:	18WAU-0004		Lab. Co	ntact:						Rogers					Project Manager.
	Authority					tainer	s				, ,	Analys	es	1.1			Empil laboratory analysis you to to O2M
Lab Quote No.:		Turnaround	Standard	Air	stic /	1.8		Ni,	12	16.5							Email laboratory analysis results to O2M Project Manager.
		Time:		r / A-	p-pla			o, Mn	-						1.1.2		i roject Manager.
O2M Project		Email Address:		Wate	ass /	5	(T	Cu, Pl	/ Leve	-		- 04			1		
Manager	(0447 465 009)	russell.stevens@o2	marine.com.au	e Mat	6-61	mple	ne (n	, Cr, (e, V)	- Low	s - TB		e	1.1	1		•	
O2M Sample ID	Laboratory Sample ID	Date	Time	Sample Matrix S-Soil / SL-Sludge / W-Water / A-Air	Type B-Bottle / J-Jar / V-Vial / G-Glass / P-Plastic / B-Bag	No. of Samples	Total Volume (mL)	Trace Metals (Al, As, Cd, Cr, Cu, Pb, Mn, Ni, Zn, Ag, Fe, V)	Mercury - total - Low Level	Organotins - TBT	TOC	Moisture					Comments
UUP2				S	2 x J	2	500	х	х	х	х	х					All soil samples are marine sediment
					-			Г	0				-	-	- 0 -		
									61	no		e	Miles	LAB			Required trace metals LORs:
							1		L	aborat	orles 207		GROUN	/	U.S W	915	Arsenic Cadmium, Silver 0.1 mg/kg, Aluminium 10 mg/kg
			X		200					Rec.					0.10	2.5	Chromium 0.2 mg/kg
							2	-		Rec-		50				V	Copper, Lead, Nickel, Zinc 1 mg/kg
	parts.						4	1		By -					W		Iron 10 mg/kg Mercury 0.01 mg/kg
								1				1/2/	315			_	Wereary old marks
									Tenno	Reg - 5	/ amb	ent			Ś.		
				×				1	Cooli	ng - To	/ loe	pack /	None				
								1	Secu	ty See	al - Ye	s/No	-				
	15 A		a					i.							100	0	
Sampled By:	R. Stev	vens	Date/Time:							Relin	quishe	ed By:		R. Ste	vens		
Received By Lab:	Gur		Date/Time:	18/5/	21		100				Co	ourier:					
Sample Cold	~	Sample Con	tainer Sealed (Yes/No):	11		-									24		

O2 MARINE Primary Laboratory Analytical Reports

LABORATORY REPORT

Job Number: 19-09740-A Revision: 00 Date: 28 August 2019

ADDRESS: **O2 Marine** Suite 2, 4B Mews Rd Fremantle WA 6160

ATTENTION: Russell Stevens

DATE RECEIVED: 19/06/2019

YOUR REFERENCE: 18WAU-0004

PURCHASE ORDER:

APPROVALS:

Kim Rodgers General Manager

REPORT COMMENTS:

This report is issued by Analytical Reference Laboratory (WA) Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Samples are analysed on an as received basis unless otherwise noted.

Elutriation subcontracted to MPL, NATA Accred No. 2901, Report Number 231512

METHOD REFERENCES:

Methods prefixed with "ARL" are covered under NATA Accreditation Number: 2377 Methods prefixed with "PM" are covered under NATA Accreditation Number: 2561 Methods prefixed with "EDP" are covered under NATA Accreditation Number: 19290

Method ID	Method Description
ARL No. 401/403	Metals in Soil and Sediment by ICPOES/MS
Subcontracting	See Report Comments section for more information.

02 Marine Job No: 19-09740-A

LABORATORY REPORT Revision: 00

Date: 28/08/19

Metals in Soil and Sediment		Sample No	19-09740-A-48	19-09740-A-49
	Samp	ble Description	Composite 1: CH10-1, CH11, CH12-S, CH12- D	Composite 2: CH13, CH14-S, CH14-D, CH15
		Sample Date	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result
Copper - 1M HCI	1	mg/kg	2	2
Zinc - 1M HCI	1	mg/kg	4	2

Metals in Water		Sample No	19-09740-A-48	19-09740-A-49
	Samp	ble Description	Composite 1: CH10-1, CH11, CH12-S, CH12- D	Composite 2: CH13, CH14-S, CH14-D, CH15
		Sample Date	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result
Copper - Elutriate	0.002	mg/L	<0.002	<0.002
Zinc - Elutriate	0.005	mg/L	0.009	0.025

Result Definitions [NT] Not Tested * Denotes test not covered by NATA Accreditation

[ND] Not Detected at indicated Limit of Reporting

FOR MICROBIOLOGICAL TESTING - The data in this report may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

EcoDiagnostics

LABORATORY REPORT

 Job Number:
 19-09631-A

 Revision:
 00

 Date:
 31 July 2019

ADDRESS: 02 Marine Suite 2, 4B Mews Rd Fremantle WA 6160

ATTENTION: Josh Abott

DATE RECEIVED: 19/06/2019

YOUR REFERENCE: 18WAU-0004

PURCHASE ORDER:

APPROVALS:

DouglasTodd Laboratory Manager

REPORT COMMENTS:

This report is issued by Analytical Reference Laboratory (WA) Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Samples are analysed on an as received basis unless otherwise noted.

Elutriate Metals were subcontracted to MPL, Report No 230092

METHOD REFERENCES:

Method ID	Method Description
ARL No. 401/403	Metals in Soil and Sediment by ICPOES/MS
ARL No. 29/402/403	Metals in Water by AAS/ICPOES/ICPMS

02 Marine Job No: 19-09631-A

LABORATORY REPORT Revision: 00

Date: 31/07/19

Vietals	letals Sample No			19-09631-A-16	19-09631-A-19	19-09631-A-22	19-09631-A-25
	Sar	nple Description	CH1-1	CH2-1	CH3-1	CH4-1	CH5-1
		Sample Date	18/06/2019	18/06/2019	18/06/2019	18/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Cadmium - Bioavailable	0.1	mg/kg			<0.1	<0.1	
Cadmium - Elutriate	0.0002	mg/L			<0.0002	<0.0002	
Copper - Bioavailable	1	mg/kg	<1	<1	<1	<1	<1
Copper - Elutriate	0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Lead - Bioavailable	1	mg/kg			<1		
Lead - Elutriate	0.002	mg/L			<0.002		
Zinc - Bioavailable	1	mg/kg		2	3	5	8
Zinc - Elutriate	0.005	mg/L		0.021	0.032	0.015	0.007

Metals		Sample No	19-09631-A-28	19-09631-A-49	19-09631-A-52
	Sar	nple Description	CH6-1	CH7-1	CH8-1
		Sample Date	17/06/2019	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result
Copper - Bioavailable	1	mg/kg	<1	<1	<1
Copper - Elutriate	0.002	mg/L	<0.002	<0.002	<0.002
Zinc - Bioavailable	1	mg/kg	6	4	
Zinc - Elutriate	0.005	mg/L	0.019	0.26	

Result Definitions

LOR Limit of Reporting [NT] Not Tested * Denotes test conducted by in-house methodology. [NT] Not Tested [ND] Not Detected at indicated Limit of Reporting

FOR MICROBIOLOGICAL TESTING - The data in this report may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

LABORATORY REPORT

Job Number: 19-09740 Revision: 02 Date:

27 August 2019

ADDRESS: **O2 Marine** Suite 2, 4B Mews Rd Fremantle WA 6160

ATTENTION: Russell Stevens

DATE RECEIVED: 19/06/2019

YOUR REFERENCE: 18WAU-0004

PURCHASE ORDER:

APPROVALS:

SSangste Sean Sangster

Kim Rodgers General Manager

REPORT COMMENTS:

This report is issued by Analytical Reference Laboratory (WA) Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Inorganics Supervisor

Samples are analysed on an as received basis unless otherwise noted.

Tributyltin as Sn analysis subcontracted to MPL, NATA Accred No. 2901, Report Number 228636

Metals and TOC in soils analysis was conducted on a dry weight basis.

METHOD REFERENCES:

Methods prefixed with "ARL" are covered under NATA Accreditation Number: 2377 Methods prefixed with "PM" are covered under NATA Accreditation Number: 2561 Methods prefixed with "EDP" are covered under NATA Accreditation Number: 19290

Method ID	Method Description
ARL No. 401/403	Metals in Soil and Sediment by ICPOES/MS
ARL No. 030	Metals in Soil and Sediment by AAS
ARL No. 406	Mercury by Cold Vapour Atomic Absorption Spectrophotometry
ARL No. 29/402/403	Metals in Water by AAS/ICPOES/ICPMS
ARL No. 040	Arsenic by Hydride Atomic Absorption
ARL No. 135	Moisture
ARL No. 201	KCL Extractable pH and TAA
ARL No. 204	Sulfur, Calcium and Magnesium by KCI Extraction
ARL No. 205	Sulfur, Calcium and Magnesium by 4M HCI Extraction
ARL No. 207	Chromium Reducible Sulfur
ARL No. 136	Lime Equivalence in Biosolids
ARL No. 210	Acid Sulfate Soils Method Codes and Further Calculations
ARL No. 064	Total Organic Carbon in Sediment
Subcontracting	See Report Comments section for more information.

02 Marine Job No: 19-09740

LABORATORY REPORT Revision: 02

Date: 27/08/19

Metals in Soil and Sediment		Sample No	19-09740-1	19-09740-2	19-09740-3	19-09740-4	19-09740-5
	Sample Description		NC1	NC3-S	NC5-S	NC7-S	NC9
Sample Date			17/06/2019	17/06/2019	17/06/2019	16/06/2019	16/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	800	220	240	290	310
Arsenic	0.1	mg/kg	1.9	1.4	1.3	1.1	1.5
Cadmium	0.1	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Chromium	1	mg/kg	11	12	13	12	11
Copper	1	mg/kg	18	14	13	15	14
Lead	1	mg/kg	3	2	2	2	1
Manganese	1	mg/kg	28	14	17	17	16
Nickel	1	mg/kg	1	<1	<1	<1	<1
Zinc	1	mg/kg	15	5	3	6	6
Silver	1	mg/kg	<1	<1	<1	<1	<1
Iron	1	mg/kg	1,300	540	520	650	700
Vanadium	2	mg/kg	4	<2	<2	2	2
Mercury	0.02	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02

Metals in Soil and Sediment		Sample No	19-09740-6	19-09740-7	19-09740-8	19-09740-9	19-09740-10
	Sam	ple Description	NC11	NC13	CH1-1	CH1-2	CH1-3
	Sample Date		16/06/2019	16/06/2019	18/06/2019	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	340	300	2,000	2,400	2,500
Arsenic	0.1	mg/kg	1.7	2.0	6.3	6.6	6.3
Cadmium	0.1	mg/kg	<0.1	<0.1	0.8	1.3	0.8
Chromium	1	mg/kg	11	15	18	22	19
Copper	1	mg/kg	14	12	99	120	110
Lead	1	mg/kg	2	1	16	19	21
Manganese	1	mg/kg	21	21	59	53	57
Nickel	1	mg/kg	<1	<1	3	4	4
Zinc	1	mg/kg	7	3	180	200	190
Silver	1	mg/kg	<1	<1	<1	<1	<1
Iron	1	mg/kg	780	820	5,400	5,900	6,000
Vanadium	2	mg/kg	3	3	14	16	15
Mercury	0.02	mg/kg	<0.02	<0.02	0.07	0.03	0.06

Metals in Soil and Sediment		Sample No	19-09740-11	19-09740-12	19-09740-13	19-09740-14	19-09740-15
	Sample Description		CH2-1	CH3-1	CH4-1	CH5-1	CH5-2
		Sample Date	18/06/2019	18/06/2019	18/06/2019	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	2,400	2,800	2,600	1,200	1,300
Arsenic	0.1	mg/kg	6.0	7.1	8.0	4.1	4.1
Cadmium	0.1	mg/kg	1.1	3.4	2.1	0.6	0.6
Chromium	1	mg/kg	18	22	26	13	14
Copper	1	mg/kg	200	340	280	81	83
Lead	1	mg/kg	31	65	48	15	15
Manganese	1	mg/kg	47	59	51	35	36
Nickel	1	mg/kg	4	5	6	2	2
Zinc	1	mg/kg	360	950	580	210	230
Silver	1	mg/kg	<1	1	<1	<1	<1
Iron	1	mg/kg	8,100	9,600	9,300	4,900	5,300

O2 Marine			LABORATORY	<u>REPORT</u>			
Job No: 19-09740			Revision:	02			Date: 27/08/19
Metals in Soil and Sediment		Sample No	19-09740-11	19-09740-12	19-09740-13	19-09740-14	19-09740-15
	Sam	ole Description	CH2-1	CH3-1	CH4-1	CH5-1	CH5-2
		Sample Date	18/06/2019	18/06/2019	18/06/2019	17/06/2019	17/06/2019
Vanadium	2	mg/kg	18	19	17	10	11
Mercury	0.02	mg/kg	0.08	0.11	0.09	0.04	0.04
Metals in Soil and Sediment		Sample No	19-09740-16	19-09740-17	19-09740-18	19-09740-19	19-09740-20
	Sam	ole Description	CH5-3	CH6-1	CH7-1	CH8-1	CH8-D
		Sample Date	17/06/2019	17/06/2019	17/06/2019	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	1,100	2,400	2,800	1,900	1,800
Arsenic	0.1	mg/kg	4.6	5.9	6.0	3.9	4.0
Cadmium	0.1	mg/kg	0.5	1.1	1.1	0.6	0.7
Chromium	1	mg/kg	14	20	19	15	17
Copper	1	mg/kg	67	190	230	110	140
Lead	1	mg/kg	12	29	33	17	20
Manganese	1	mg/kg	33	50	46	34	41
Nickel	1	mg/kg	2	4	4	3	4
Zinc	1	mg/kg	140	350	370	170	230
Silver	1	mg/kg	<1	<1	<1	<1	<1
Iron	1	mg/kg	4,300	9,000	9,100	5,200	5,400
Vanadium	2	mg/kg	9	16	17	12	12
Mercury	0.02	mg/kg	0.03	0.07	0.13	0.06	0.09

Metals in Soil and Sediment		Sample No	19-09740-21	19-09740-22	19-09740-23	19-09740-24	19-09740-25
	Sam	ole Description	CH10-1	CH10-2	CH10-3	CH11	CH12-S
Sample Date			17/06/2019	17/06/2019	17/06/2019	18/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	1,500	1,700	1,600	2,000	2,200
Arsenic	0.1	mg/kg	4.1	4.9	3.8	4.7	4.5
Cadmium	0.1	mg/kg	0.4	0.5	0.4	0.9	0.5
Chromium	1	mg/kg	19	19	14	20	19
Copper	1	mg/kg	53	61	54	170	150
Lead	1	mg/kg	8	9	8	27	22
Manganese	1	mg/kg	30	29	28	70	49
Nickel	1	mg/kg	3	3	2	4	4
Zinc	1	mg/kg	83	94	87	310	240
Silver	1	mg/kg	<1	<1	<1	<1	<1
Iron	1	mg/kg	4,500	5,100	4,600	7,400	12,000
Vanadium	2	mg/kg	9	10	9	17	14
Mercury	0.02	mg/kg	0.03	0.03	0.04	0.08	0.06

Metals in Soil and Sediment	Sample No		19-09740-26	19-09740-27	19-09740-28	19-09740-29	19-09740-30
	Samp	ole Description	CH12-D	CH13	CH14-S	CH14-D	CH15
Sample Date			17/06/2019	17/06/2019	18/06/2019	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	1,900	2,200	5,300	4,300	2,300
Arsenic	0.1	mg/kg	4.4	6.4	8.6	7.0	6.2
Cadmium	0.1	mg/kg	0.7	0.8	1.1	0.8	1.0
Chromium	1	mg/kg	18	20	26	23	22
Copper	1	mg/kg	140	150	150	150	200
Lead	1	mg/kg	20	23	38	32	31

O2 Marine							
Job No: 19-09740			Revision:	02			Date: 27/08/19
Metals in Soil and Sediment		Sample No	19-09740-26	19-09740-27	19-09740-28	19-09740-29	19-09740-30
	Sam	ple Description	CH12-D	CH13	CH14-S	CH14-D	CH15
		Sample Date	17/06/2019	17/06/2019	18/06/2019	18/06/2019	18/06/2019
Manganese	1	mg/kg	49	42	77	72	52
Nickel	1	mg/kg	3	4	5	5	4
Zinc	1	mg/kg	240	250	300	280	320
Silver	1	mg/kg	<1	<1	<1	<1	<1
Iron	1	mg/kg	7,100	7,900	9,100	8,000	8,800
Vanadium	2	mg/kg	13	16	24	21	18
Mercury	0.02	mg/kg	0.08	0.07	0.12	0.25	0.07

Metals in Soil and Sediment		Sample No	19-09740-31	19-09740-32	19-09740-33	19-09740-34	19-09740-35
	Sam	ple Description	DUP-4	DUP-5	TRIP-S1	TRIP-S2	TRIP-S3
		Sample Date	17/06/2019	18/06/2019	17/06/2019	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	1,200	1,900	1,400	3,100	2,900
Arsenic	0.1	mg/kg	4.1	5.1	3.7	6.9	6.1
Cadmium	0.1	mg/kg	0.6	1.0	0.5	1.3	3.5
Chromium	1	mg/kg	13	17	15	22	19
Copper	1	mg/kg	83	180	86	200	320
Lead	1	mg/kg	16	30	13	31	65
Manganese	1	mg/kg	35	42	33	50	50
Nickel	1	mg/kg	2	3	2	5	4
Zinc	1	mg/kg	180	310	130	350	940
Silver	1	mg/kg	<1	<1	<1	<1	<1
Iron	1	mg/kg	4,700	6,900	3,900	8,400	8,700
Vanadium	2	mg/kg	10	15	9	18	18
Mercury	0.02	mg/kg	0.04	0.09	0.04	0.09	0.10

Metals in Water		Sample No	19-09740-36	19-09740-37
	Samp	ole Description	RINSB	TRIPB
		Sample Date	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result
Aluminium - Dissolved	0.01	mg/L	<0.01	<0.01
Arsenic - Dissolved	0.001	mg/L	<0.001	<0.001
Cadmium - Dissolved	0.0001	mg/L	<0.0001	<0.0001
Chromium - Dissolved	0.001	mg/L	<0.001	<0.001
Copper - Dissolved	0.001	mg/L	<0.001	<0.001
Lead - Dissolved	0.001	mg/L	<0.001	<0.001
Manganese - Dissolved	0.01	mg/L	<0.01	<0.01
Nickel - Dissolved	0.001	mg/L	<0.001	<0.001
Zinc - Dissolved	0.005	mg/L	<0.005	<0.005
Silver - Dissolved	0.001	mg/L	<0.001	<0.001
Iron - Dissolved	0.01	mg/L	<0.01	<0.01
Vanadium - Dissolved	0.01	mg/L	<0.01	<0.01
Mercury - Total	0.0001	mg/L	<0.0001	<0.0001

ARL Group Proudly Western Australian	ARL	ProMicro	EcoDiagnostics
---	-----	----------	----------------

<i>02 Marine Iob No: 19-09740</i>			<u>LABORATORY</u> Revision.				Date: 27/08/19	
Chromium Reducible Sulfur	19-09740-1	19-09740-2	40.00740.3	19-09740-4	19-09740-5			
Chromium Reducible Sulfur	Com	Sample No			19-09740-3			
	San	ple Description	NC1	NC3-S	NC5-S	NC7-S	NC9	
		Sample Date	17/06/2019	17/06/2019	17/06/2019	16/06/2019	16/06/2019	
ANALYTE	LOR	Units	Result	Result	Result	Result	Result	
Moisture	0.1	%w/w	33.1	31.8	27.2	31.0	36.4	
pH _{KCl} (23A)	0.1	pH Units	9.5	9.7	9.8	9.7	9.7	
Titratable Actual Acidity (23F)	2	mol H+/t	<2	<2	<2	<2	<2	
Sulphidic - TAA (s-23F)	0.005	% Pyrite Sulfur	<0.005	<0.005	<0.005	<0.005	<0.005	
KCI Extractable Sulfur (23Ce)	0.005	% S	0.053	0.051	0.035	0.042	0.060	
HCI Extractable Sulfur (20Be)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	
Net Acid Soluble Sulfur (23J)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	
let Acid Soluble Sulfur (a-23J)	4	mole H+/t	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	
let Acid Soluble Sulfur (s-23J)	0.005	% Pyrite S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	
Chromium Reducible Sulfur (22B)	0.01	% S	0.02	0.02	0.01	0.02	<0.01	
Chromium Reducible Sulfur (a-22B)	8	mole H+/t	12	12	<8	12	<8	
Acid Neutralising Capacity BT (19A2)	0.05	% CaCO ₃	89	100	88	94	93	
Acid Neutralising Capacity BT (a-19A2)	10	mole H+/t	18,000	20,000	18,000	19,000	19,000	
Acid Neutralising Capacity BT (s-19A2)	0.02	% Pyrite S	29	32	28	30	30	
ANC Fineness Factor	0.5	-	1.5	1.5	1.5	1.5	1.5	
Net Acidity	0.01	% S	<0.01	<0.01	<0.01	<0.01	<0.01	
Net Acidity	10	mole H+/t	<10	<10	<10	<10	<10	
Liming Rate	1	kg CaCO ₃ /t	<1	<1	<1	<1	<1	
Net Acidity excluding ANC	0.01	% S	0.02	0.02	0.01	0.02	<0.01	
Net Acidity excluding ANC	10	mole H ⁺ /t	10	10	<10	10	<10	
Liming Rate excluding ANC	1	kg CaCO ₃ /t	2	2	1	2	<1	

Chromium Reducible Sulfur		Sample No	19-09740-6	19-09740-7	19-09740-8	19-09740-11	19-09740-12
	Sam	ple Description	NC11	NC13	CH1-1	CH2-1	CH3-1
		Sample Date	16/06/2019	16/06/2019	18/06/2019	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	36.1	29.5	39.4	48.4	50.6
pH _{KCl} (23A)	0.1	pH Units	9.6	9.0	9.2	8.9	9.0
Titratable Actual Acidity (23F)	2	mol H+/t	<2	<2	<2	<2	<2
Sulphidic - TAA (s-23F)	0.005	% Pyrite Sulfur	<0.005	<0.005	<0.005	<0.005	<0.005
KCI Extractable Sulfur (23Ce)	0.005	% S	0.059	0.037	0.071	0.10	0.11
HCI Extractable Sulfur (20Be)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (23J)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (a-23J)	4	mole H+/t	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (s-23J)	0.005	% Pyrite S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Chromium Reducible Sulfur (22B)	0.01	% S	0.04	0.02	0.26	0.39	0.62
Chromium Reducible Sulfur (a-22B)	8	mole H+/t	25	12	160	240	390

O2 Marine			<u>LABORATORY</u>	REPORT			
Job No: 19-09740			Revision.	02			Date: 27/08/
Chromium Reducible Sulfur		Sample No	19-09740-6	19-09740-7	19-09740-8	19-09740-11	19-09740-12
	San	ple Description	NC11	NC13	CH1-1	CH2-1	CH3-1
		Sample Date	16/06/2019	16/06/2019	18/06/2019	18/06/2019	18/06/2019
Acid Neutralising Capacity BT (19A2)	0.05	% CaCO ₃	97	70	62	77	78
Acid Neutralising Capacity BT (a-19A2)	10	mole H+/t	19,000	14,000	12,000	15,000	16,000
Acid Neutralising Capacity BT (s-19A2)	0.02	% Pyrite S	31	22	20	25	25
ANC Fineness Factor	0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity	0.01	% S	<0.01	<0.01	<0.01	<0.01	<0.01
Net Acidity	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO ₃ /t	<1	<1	<1	<1	<1
Net Acidity excluding ANC	0.01	% S	0.04	0.02	0.26	0.39	0.62
Net Acidity excluding ANC	10	mole H+/t	30	10	160	240	390
Liming Rate excluding ANC	1	kg CaCO ₃ /t	3	2	23	34	54
Chromium Reducible Sulfur		Sample No	19-09740-13	19-09740-14	19-09740-17	19-09740-18	19-09740-19
	Son	nple Description	CH4-1	CH5-1	CH6-1	CH7-1	CH8-1
	Jan	Sample Date	18/06/2019	17/06/2019	17/06/2019	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	47.7	31.4	41.2	50.3	37.7
	0.1	pH Units	8.9	9.3	9.1	8.9	9.3
pH _{KCl} (23A) Titratable Actual Acidity (23F)	2	mol H ⁺ /t	<2	9.3	9.1	<2	9.3 <2
,							
Sulphidic - TAA (s-23F)	0.005	% Pyrite Sulfur	<0.005	<0.005	<0.005	<0.005	<0.005
KCI Extractable Sulfur (23Ce)	0.005	% S	0.10	0.051	0.078	0.11	0.073
HCI Extractable Sulfur (20Be)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (23J)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
let Acid Soluble Sulfur (a-23J)	4	mole H+/t	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
let Acid Soluble Sulfur (s-23J)	0.005	% Pyrite S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Chromium Reducible Sulfur (22B)	0.01	% S	0.72	0.24	0.42	0.46	0.31
Chromium Reducible Sulfur (a-22B)	8	mole H+/t	450	150	260	290	190
Acid Neutralising Capacity BT (19A2)	0.05	% CaCO ₃	72	88	71	74	63
Acid Neutralising Capacity BT (a-19A2)	10	mole H+/t	14,000	18,000	14,000	15,000	13,000

23

1.5

<0.01

<10

<1

0.72

450

62

28

1.5

<0.01

<10

<1

0.24

150

21

23

1.5

<0.01

<10

<1

0.42

260

36

24

1.5

<0.01

<10

<1

0.46

290

40

% Pyrite S

% S

mole H+/t

kg CaCO₃/t

% S

mole H^+/t

kg CaCO₃/t

0.02

0.5

0.01

10

1

0.01

10

1

Acid Neutralising Capacity BT

(s-19Å2) ANC Fineness Factor

Net Acidity

Net Acidity

Liming Rate

Net Acidity excluding ANC

Net Acidity excluding ANC

Liming Rate excluding ANC

20

1.5

<0.01

<10

<1

0.31

190

27

ARL Group Proudly Western Australian	ARL	ProMicro	EcoDiagnostics
---	-----	----------	----------------

02 Marine Job No: 19-09740			LABORATORY Revision:				Date: 27/08/1
JOD IVO: 19-09740			REVISION:	02	1	1	Dale: 27/08/1
Chromium Reducible Sulfur		Sample No	19-09740-20	19-09740-21	19-09740-24	19-09740-25	19-09740-27
	San	nple Description	CH8-D	CH10-1	CH11	CH12-S	CH13
		Sample Date	17/06/2019	17/06/2019	18/06/2019	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	40.1	33.0	46.3	39.2	60.8
pH _{KCl} (23A)	0.1	pH Units	9.2	9.1	9.1	9.2	8.6
Titratable Actual Acidity (23F)	2	mol H+/t	<2	<2	<2	<2	<2
Sulphidic - TAA (s-23F)	0.005	% Pyrite Sulfur	<0.005	<0.005	<0.005	<0.005	<0.005
KCI Extractable Sulfur (23Ce)	0.005	% S	0.067	0.058	0.082	0.069	0.14
HCI Extractable Sulfur (20Be)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (23J)	0.005	% S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
let Acid Soluble Sulfur (a-23J)	4	mole H+/t	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
let Acid Soluble Sulfur (s-23J)	0.005	% Pyrite S	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED	NOT REQUIRED
Chromium Reducible Sulfur (22B)	0.01	% S	0.18	0.17	0.26	0.32	0.23
Chromium Reducible Sulfur (a-22B)	8	mole H+/t	110	110	160	200	140
Acid Neutralising Capacity BT (19A2)	0.05	% CaCO ₃	67	55	78	74	80
Acid Neutralising Capacity BT (a-19A2)	10	mole H+/t	13,000	11,000	16,000	15,000	16,000
Acid Neutralising Capacity BT (s-19A2)	0.02	% Pyrite S	21	18	25	24	26
ANC Fineness Factor	0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity	0.01	% S	<0.01	<0.01	<0.01	<0.01	<0.01
Net Acidity	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO ₃ /t	<1	<1	<1	<1	<1
Net Acidity excluding ANC	0.01	% S	0.18	0.17	0.26	0.32	0.23
Net Acidity excluding ANC	10	mole H+/t	110	110	160	200	140
Liming Rate excluding ANC	1	kg CaCO ₃ /t	16	15	23	28	20

Chromium Reducible Sulfur	19-09740-28	19-09740-30		
	Sam	ole Description	CH14-S	CH15
		Sample Date	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result
Moisture	0.1	%w/w	43.6	54.3
pH _{KCl} (23A)	0.1	pH Units	8.9	8.8
Titratable Actual Acidity (23F)	2	mol H+/t	<2	<2
Sulphidic - TAA (s-23F)	0.005	% Pyrite Sulfur	<0.005	<0.005
KCI Extractable Sulfur (23Ce)	0.005	% S	0.048	0.12
HCI Extractable Sulfur (20Be)	0.005	% S	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (23J)	0.005	% S	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (a-23J)	4	mole H+/t	NOT REQUIRED	NOT REQUIRED
Net Acid Soluble Sulfur (s-23J)	0.005	% Pyrite S	NOT REQUIRED	NOT REQUIRED
Chromium Reducible Sulfur (22B)	0.01	% S	0.74	0.58
Chromium Reducible Sulfur (a-22B)	8	mole H+/t	460	360

P
EcoDiagnostics

<i>02 Marine Job No: 19-09740</i>	<u>LABORATORY REPORT</u> Revision: 02						
Chromium Reducible Sulfur		Sample No	19-09740-28	19-09740-30			
	Sam	ple Description	CH14-S	CH15			
		Sample Date	18/06/2019	18/06/2019			
Acid Neutralising Capacity BT (19A2)	0.05	% CaCO ₃	81	77			
Acid Neutralising Capacity BT (a-19A2)	10	mole H+/t	16,000	15,000			
Acid Neutralising Capacity BT (s-19A2)	0.02	% Pyrite S	26	25			
ANC Fineness Factor	0.5	-	1.5	1.5			
Net Acidity	0.01	% S	<0.01	<0.01			
Net Acidity	10	mole H+/t	<10	<10			
Liming Rate	1	kg CaCO ₃ /t	<1	<1			
Net Acidity excluding ANC	0.01	% S	0.74	0.58			
Net Acidity excluding ANC	10	mole H+/t	460	360			
Liming Rate excluding ANC	1	kg CaCO ₃ /t	64	50			

Misc. Inorganics in Soil	lisc. Inorganics in Soil Sample No		19-09740-20	19-09740-24	19-09740-25	19-09740-26	19-09740-27
Sample Description			CH8-D	CH11	CH12-S	CH12-D	CH13
		Sample Date	17/06/2019	18/06/2019	17/06/2019	17/06/2019	17/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
TOC	0.1	%	1.2	1.4	1.3	1.1	3.0

Misc. Inorganics in Soil Sample No			19-09740-28	19-09740-29	19-09740-30	19-09740-45	19-09740-46
Sample Description			CH14-S	CH14-D	CH15	CH1 (Comp CH1-1, CH1-2, CH1-3)	CH3 (Comp CH3-1, CH3-2, CH3-3)
Sample Date			18/06/2019	18/06/2019	18/06/2019	18/06/2019	18/06/2019
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
TOC	0.1	%	2.4	2.0	2.6	1.3	1.9

Misc. Inorganics in Soil	19-09740-47		
	Samp	CH5 (Comp CH5-1, CH5-2, CH5-3)	
		Sample Date	17/06/2019
ANALYTE	LOR	Units	Result
TOC	0.1	%	0.5

Subcontracting Sample No			19-09740-20	19-09740-24	19-09740-25	19-09740-26	19-09740-27		
	Sam	ole Description	CH8-D	CH11	CH12-S	CH12-D	CH13		
Sample Date			17/06/2019	18/06/2019	17/06/2019	17/06/2019	17/06/2019		
ANALYTE LOR Units		Result	Result	Result	Result	Result			
Tributyl tin	0.50 µg Sn/kg		2.8	7.6	9.0	2.9	3.9		
Subcontracting		Sample No	19-09740-28	19-09740-29	19-09740-30	19-09740-45	19-09740-46		
	CH14-S	CH14-D	CH15	CH1 (Comp CH1-1, CH1-2, CH1-3)	CH3 (Comp CH3-1, CH3-2, CH3-3)				
Sample Date			18/06/2019	18/06/2019	18/06/2019	18/06/2019	18/06/2019		
ANALYTE	LOR	Units	Result	Result	Result	Result	Result		
Tributyl tin	0.50	µg Sn/kg	8.2	11	7.2	17	12		

Date: 27/08/19

02 Marine

Job No: 19-09740

LABORATORY REPORT Revision: 02

Date: 27/08/19

Subcontracting		Sample No				
	Sam	Sample Description				
		Sample Date	17/06/2019			
ANALYTE	LOR	Units	Result			
Tributyl tin	0.50	µg Sn/kg	6.4			

Result Definitions

LOR Limit of Reporting [NT] Not Tested

* Denotes test not covered by NATA Accreditation

[ND] Not Detected at indicated Limit of Reporting

FOR MICROBIOLOGICAL TESTING - The data in this report may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

CERTIFICATE OF ANALYSIS 228636

Client Details	
Client	Analytical Reference Laboratory (WA)
Attention	Ryan Seaton
Address	46-48 Banksia Road, Welshpool, WA, 6106

Sample Details	
Your Reference	<u>19-09740</u>
Number of Samples	8 Soils
Date samples received	24/06/2019
Date completed instructions received	24/06/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details								
Date results requested by	03/07/2019							
Date of Issue	28/06/2019							
NATA Accreditation Number 29	NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *								

Results Approved By Michael Kubiak, Laboratory Manager

Authorised By

Ml. h

Michael Kubiak, Laboratory Manager

Organotin Compounds in Soil						
Our Reference		228636-1	228636-2	228636-3	228636-4	228636-5
Your Reference	UNITS	19-09740-20	19-09740-24	19-09740-25	19-09740-26	19-09740-27
Sample ID		CH8-D	CH11	CH12-S	CH12-D	CH13
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/06/2019	27/06/2019	27/06/2019	27/06/2019	27/06/2019
Date analysed	-	28/06/2019	28/06/2019	28/06/2019	28/06/2019	28/06/2019
Tributyltin as Sn	µg/kg	2.8	7.6	9.0	2.9	3.9
Surrogate Triphenyltin	%	4	97	97	97	96

Organotin Compounds in Soil				
Our Reference		228636-6	228636-7	228636-8
Your Reference	UNITS	19-09740-28	19-09740-29	19-09740-30
Sample ID		CH14-S	CH14-D	CH15
Type of sample		Soil	Soil	Soil
Date extracted	-	27/06/2019	27/06/2019	27/06/2019
Date analysed	-	28/06/2019	28/06/2019	28/06/2019
Tributyltin as Sn	µg/kg	8.2	11	7.2
Surrogate Triphenyltin	%	95	95	95

Moisture						_
Our Reference		228636-1	228636-2	228636-3	228636-4	228636-5
Your Reference	UNITS	19-09740-20	19-09740-24	19-09740-25	19-09740-26	19-09740-27
Sample ID		CH8-D	CH11	CH12-S	CH12-D	CH13
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/06/2019	27/06/2019	27/06/2019	27/06/2019	27/06/2019
Date analysed	-	28/06/2019	28/06/2019	28/06/2019	28/06/2019	28/06/2019
Moisture	%	35	46	35	35	58

Moisture				
Our Reference		228636-6	228636-7	228636-8
Your Reference	UNITS	19-09740-28	19-09740-29	19-09740-30
Sample ID		CH14-S	CH14-D	CH15
Type of sample		Soil	Soil	Soil
Date prepared	-	27/06/2019	27/06/2019	27/06/2019
Date analysed	-	28/06/2019	28/06/2019	28/06/2019
Moisture	%	43	53	53

Method ID	Methodology Summary
INORG-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
ORG-018	Based on SFS-EN ISO 17353, ISO/DIS 23161 and NIOSH 5504. Air samples are extracted with acetonitrile containing 0.1% acetic acid using sonication. Extracts are then derivatised and extracted. Soils are extracted with a mix of water and methanolic KOH solution, neutralised and then derivatised and extracted. Water samples are pH adjusted, salt added and then derivatised, extracted into hexane and concentrated to a small volume. The extracts are analysed by GC/MSMS.

QUALITY CONTROL: Organotin Compounds in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	228636-2
Date extracted	-			27/06/2019	1	27/06/2019	27/06/2019		27/06/2019	27/06/2019
Date analysed	-			28/06/2019	1	28/06/2019	28/06/2019		28/06/2019	28/06/2019
Tributyltin as Sn	µg/kg	0.5	ORG-018	<0.5	1	2.8	3.6	25	111	#
Surrogate Triphenyltin	%		ORG-018	100	1	4	98	184	100	94

QUALITY CONTROL: Moisture						Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-			27/06/2019	[NT]		[NT]	[NT]				
Date analysed	-			28/06/2019	[NT]		[NT]	[NT]				
Moisture	%	0.1	INORG-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]		

Result Definiti	Result Definitions				
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				
Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.					

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available).

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) a

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

#2MS - # Percent recovery is not possible to report as possitive TBT in the sample.

MPL Reference: 228636 Revision No: R00

CERTIFICATE OF ANALYSIS 230092

Client Details	
Client	Analytical Reference Laboratory (WA)
Attention	Ryan Seaton
Address	46-48 Banksia Road, Welshpool, WA, 6106

Sample Details	
Your Reference	<u>19-09631</u>
Number of Samples	8 Soil
Date samples received	23/07/2019
Date completed instructions received	23/07/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	01/08/2019
Date of Issue	29/07/2019
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Heram Halim, Operations Manager

Authorised By

Ml. h

Michael Kubiak, Laboratory Manager

Dissolved Metals in Water						
Our Reference		230092-1	230092-2	230092-3	230092-4	230092-5
Your Reference	UNITS	19-09631-13	19-09631-16	19-09631-19	19-09631-22	19-09631-25
Location		CH1-1	CH2-1	CH3-1	CH4-1	CH5-1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/07/2019	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Date analysed	-	26/07/2019	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Cadmium-Dissolved	mg/L	[NA]	[NA]	<0.0002	<0.0002	[NA]
Copper-Dissolved	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Lead-Dissolved	mg/L	[NA]	[NA]	<0.002	[NA]	[NA]
Zinc-Dissolved	mg/L	[NA]	0.021	0.032	0.015	0.007
Dissolved Metals in Water						
Our Reference		230092-6	230092-7	230092-8	230092-9	
Your Reference	UNITS	19-09631-28	19-09631-49	19-09631-52	Elutriate	
Location		CH6-1	CH7-1	CH8-1	-	

LOCATION		000-1	007-1	000-1	-
Type of sample		Soil	Soil	Soil	Elutriate
Date prepared	-	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Date analysed	-	26/07/2019	26/07/2019	26/07/2019	26/07/2019
Cadmium-Dissolved	mg/L	[NA]	[NA]	[NA]	<0.0002
Copper-Dissolved	mg/L	<0.002	<0.002	<0.002	<0.002
Lead-Dissolved	mg/L	[NA]	[NA]	[NA]	<0.002
Zinc-Dissolved	mg/L	0.019	0.26	[NA]	0.008

Method ID	Methodology Summary
METALS-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Dissolved Metals in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	230092-2
Date prepared	-			26/07/2019	1	26/07/2019	26/07/2019		26/07/2019	26/07/2019
Date analysed	-			26/07/2019	1	26/07/2019	26/07/2019		26/07/2019	26/07/2019
Cadmium-Dissolved	mg/L	0.0001	METALS-022	<0.0001	[NT]	[NT]		[NT]	102	99
Copper-Dissolved	mg/L	0.001	METALS-022	<0.001	1	<0.002	<0.002	0	100	90
Lead-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]	[NT]		[NT]	106	92
Zinc-Dissolved	mg/L	0.001	METALS-022	<0.001	[NT]	[NT]	[NT]	[NT]	98	93

Result Definiti	Result Definitions				
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				
Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.					

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available).

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) a

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Elutriate preparation as per NAGD, as detailed in internal method INORG - 004.

Please note Elutriate Blank results reported as sample #9.

Note: Some results have raised pqls. In these cases the sample's high TDS required the sample to be diluted prior to analysis.

CERTIFICATE OF ANALYSIS 230916

Client Details	
Client	Analytical Reference Laboratory (WA)
Attention	Maja G
Address	46-48 Banksia Road, Welshpool, WA, 6106

Sample Details	
Your Reference	<u>19-09740, 19-12809</u>
Number of Samples	3 Soil, 8 Water
Date samples received	07/08/2019
Date completed instructions received	07/08/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	16/08/2019	
Date of Issue	19/08/2019	
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

<u>Results Approved By</u> Heram Halim, Operations Manager Michael Kubiak, Laboratory Manager

Authorised By

Ml. n

Michael Kubiak, Laboratory Manager

Organotin Compounds in Soil					
Our Reference			230916-1	230916-2	230916-3
Your Reference	UNITS	PQL	19-09740-45	19-09740-46	19-09740-47
Sample ID			CH1	CH3	CH5
Type of sample			Soil	Soil	Soil
Date extracted	-		14/08/2019	14/08/2019	14/08/2019
Date analysed	-		15/08/2019	15/08/2019	15/08/2019
Tributyltin as Sn	µg/kg	0.5	17	12	6.4
Surrogate Triphenyltin	%		89	91	95

Moisture					
Our Reference			230916-1	230916-2	230916-3
Your Reference	UNITS	PQL	19-09740-45	19-09740-46	19-09740-47
Sample ID			CH1	CH3	CH5
Type of sample			Soil	Soil	Soil
Date prepared	-		14/08/2019	14/08/2019	14/08/2019
Date analysed	-		14/08/2019	14/08/2019	14/08/2019
Moisture	%	0.1	42	43	30

Miscellaneous Inorganics							
Our Reference			230916-4	230916-5	230916-6	230916-7	230916-8
Your Reference	UNITS	PQL	19-12809-1	19-12809-2	19-12809-3	19-12809-4	19-12809-5
Sample ID			Rocky Point	Locker Island Bottom	Locker Island Top	Locker Point Bottom	Locker Point Top
Type of sample			Water	Water	Water	Water	Water
Date prepared	-		13/08/2019	13/08/2019	13/08/2019	13/08/2019	13/08/2019
Date analysed	-		13/08/2019	13/08/2019	13/08/2019	13/08/2019	13/08/2019
Total Organic Carbon	mg/L	1	1	1	1	1	1
Dissolved Organic Carbon	mg/L	1	<1	1	1	1	1
Miscellaneous Inorganics							
Our Reference			230916-9	230916-10	230916-11	230916-12	230916-13
Your Reference	UNITS	PQL	19-12809-6	19-12809-7	19-12809-8	19-12809-9	19-12809-10
Sample ID			Urala Creek North Channel	Urala Creek North Near Top	Urala Creek North Bottom	Urala Creek South Channel	Urala Creek South Off
Type of sample			Water	Water	Water	Water	Water
Date prepared	-		13/08/2019	13/08/2019	13/08/2019	13/08/2019	13/08/2019
Date analysed	-		13/08/2019	13/08/2019	13/08/2019	13/08/2019	13/08/2019
Total Organic Carbon	mg/L	1	1	1	1	1	2
Dissolved Organic Carbon	mg/L	1	1	1	1	1	1
Miscellaneous Inorganics							
Our Reference			230916-14	230916-15	230916-16	230916-17	230916-18
Your Reference	UNITS	PQL	19-12809-11	19-12809-12	19-12809-13	19-12809-14	19-12809-15
Sample ID			Urala Creek South Near	Fly Island Top	Fly Island Bottom	Eva Island Top	Eva Island Bottom
Type of sample			Water	Water	Water	Water	Water
Date prepared	-		13/08/2019	13/08/2019	13/08/2019	13/08/2019	13/08/2019
Date analysed	-		13/08/2019	13/08/2019	13/08/2019	13/08/2019	13/08/2019
Total Organic Carbon	mg/L	1	2	2	1	2	1
Dissolved Organic Carbon	mg/L	1	1	2	1	1	1
Miscellaneous Inorganics							
Our Reference			230916-19	230916-20	230916-21		
Your Reference	UNITS	PQL	19-12809-16	19-12809-17	19-12809-18		
Sample ID			Tent Island Top	Locker SW	Tent Island Bottom		
Type of sample			Water	Water	Water		
Date prepared	-		13/08/2019	13/08/2019	13/08/2019		
Date analysed	-		13/08/2019	13/08/2019	13/08/2019		
Total Organic Carbon	mg/L	1	1	<1	2		

Method ID	Methodology Summary
INORG-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
INORG-110	Total Nitrogen by high temperature catalytic combustion with chemiluminescence detection. Dissolved/Total Carbon and Dissolved/Total Organic and Inorganic Carbon by high temperature catalytic combustion with NDIR
ORG-018	Based on SFS-EN ISO 17353, ISO/DIS 23161 and NIOSH 5504. Air samples are extracted with acetonitrile containing 0.1% acetic acid using sonication. Extracts are then derivatised and extracted. Soils are extracted with a mix of water and methanolic KOH solution, neutralised and then derivatised and extracted. Water samples are pH adjusted, salt added and then derivatised, extracted into hexane and concentrated to a small volume. The extracts are analysed by GC/MSMS.

QUALITY CONTROL: Organotin Compounds in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	230916-1
Date extracted	-			14/08/2019	[NT]		[NT]	[NT]	14/08/2019	14/08/2019
Date analysed	-			15/08/2019	[NT]		[NT]	[NT]	15/08/2019	15/08/2019
Tributyltin as Sn	µg/kg	0.5	ORG-018	<0.5	[NT]		[NT]	[NT]	102	103
Surrogate Triphenyltin	%		ORG-018	98	[NT]		[NT]	[NT]	107	105

QUAL	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			14/08/2019	[NT]		[NT]	[NT]		[NT]
Date analysed	-			14/08/2019	[NT]		[NT]	[NT]		[NT]
Moisture	%	0.1	INORG-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	230916-12
Date prepared	-			13/08/2019	11	13/08/2019	13/08/2019		13/08/2019	13/08/2019
Date analysed	-			13/08/2019	11	13/08/2019	13/08/2019		13/08/2019	13/08/2019
Total Organic Carbon	mg/L	1	INORG-110	<1	11	1	1	0	102	[NT]
Dissolved Organic Carbon	mg/L	1	INORG-110	<1	11	1	<1	0	101	92

QUALITY CONTROL: Miscellaneous Inorganics						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	230916-15	
Date prepared	-			[NT]	[NT]		[NT]	[NT]		13/08/2019	
Date analysed	-			[NT]	[NT]		[NT]	[NT]		13/08/2019	
Total Organic Carbon	mg/L	1	INORG-110	[NT]	[NT]		[NT]	[NT]		95	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than commended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available).

Laboratory Acceptance Criteria

2011.

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

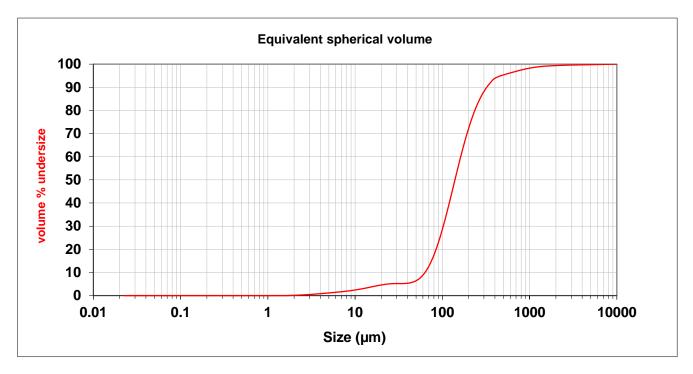
Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) a

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.


When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

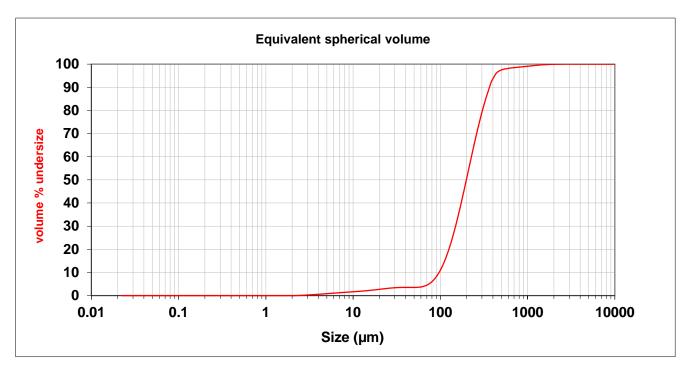
Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Sonication:	3 min sonication	Result units:	Volume	
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Dispersant:	Water			
Analysis :	Size distribution analysis by laser diffraction (ISO1:	3320-1:1999) and wet sieving		
Lab ID No :	19_0992_01			
Job No :	19_0992			
Client ID:	NC1			
Client:	ARL			

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	0.83		9.15		72.64		12.70		4.05		0.62
3.991		63.246		251.785		500.000		2000.000		10000.00	
C	Clay		Silt	Fine	e sand	Mediu	um sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

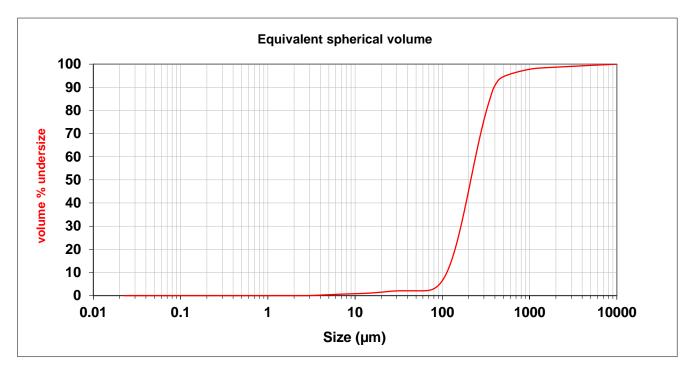
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	NC3-S			
Job No :	19_0992			
Lab ID No :	19_0992_02			
Analysis :	Size distribution analysis by laser diffraction (ISO1:	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	6 min sonication	Result units:	Volume	

Size (µm)	Vol In %	Size (µm)	Vol In %	[Size (µm)	Vol In %						
0.020		3.991			63.246		251.785		500.000		2000.00	
	0.56		3.36			63.64		29.91		2.46		0.07
3.991		63.246			251.785		500.000		2000.000		10000.00	
(Clay	5	Silt		Fine	e sand	Mediu	Im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

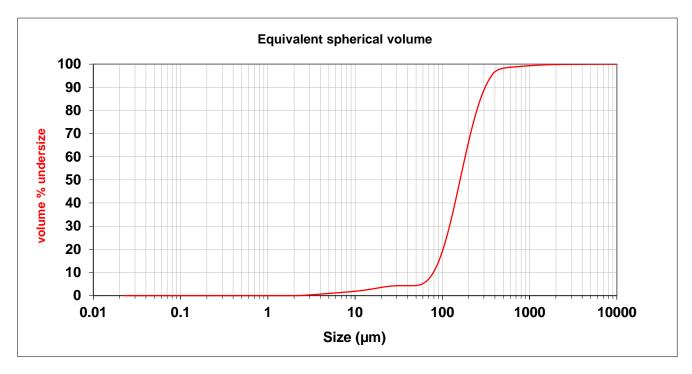
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	NC5-S			
Job No :	19_0992			
Lab ID No :	19_0992_03			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	4 min sonication	Result units:	Volume	

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	0.21		1.89		61.43		31.05		4.11		1.32
3.991		63.246		251.785		500.000		2000.000		10000.00	
c	Clay	5	Silt	Fine	e sand	Mediu	um sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

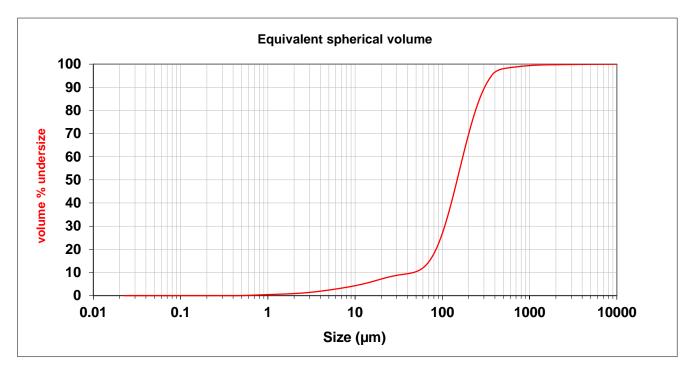
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	NC7-S			
Job No :	19_0992			
Lab ID No :	19_0992_04			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	5 min sonication	Result units:	Volume	

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	0.63		5.12		75.03		17.47		1.59		0.17
3.991		63.246		251.785		500.000		2000.000		10000.00	
C	Clay		Silt	Fine	e sand	Mediu	um sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

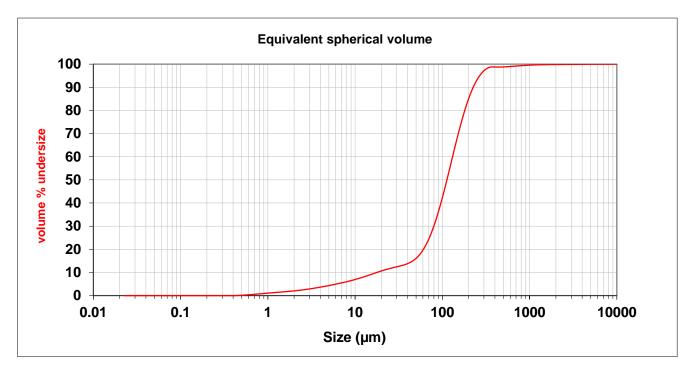
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Sonication:	9 min sonication	Result units:	Volume	
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Dispersant:	Water			
Analysis :	Size distribution analysis by laser diffraction (ISO1:	3320-1:1999) and wet sieving		
Lab ID No :	19_0992_05			
Job No :	19_0992			
Client ID:	NC9			
Client:	ARL			

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	1.91		10.83		69.55		15.74		1.75		0.22
3.991		63.246		251.785		500.000		2000.000		10000.00	
C	Clay		Silt	Fine	e sand	Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

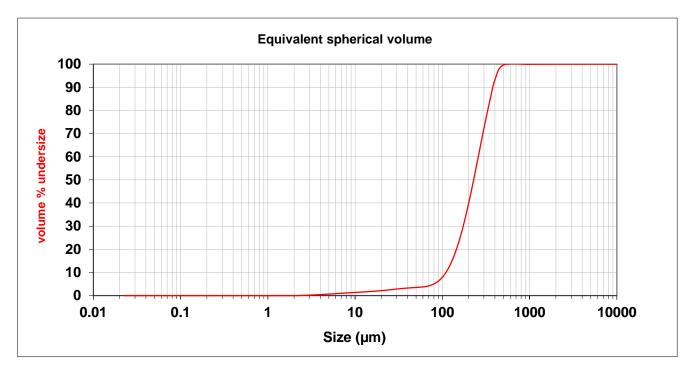
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	NC11			
Job No :	19_0992			
Lab ID No :	19_0992_06			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water	, 0		
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	13 min sonication	Result units:	Volume	

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	3.65		17.48		72.32		5.31		1.07		0.16
3.991		63.246		251.785		500.000		2000.000		10000.00	
(Clay		Silt	Fine	e sand	Mediu	im sand	Coars	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

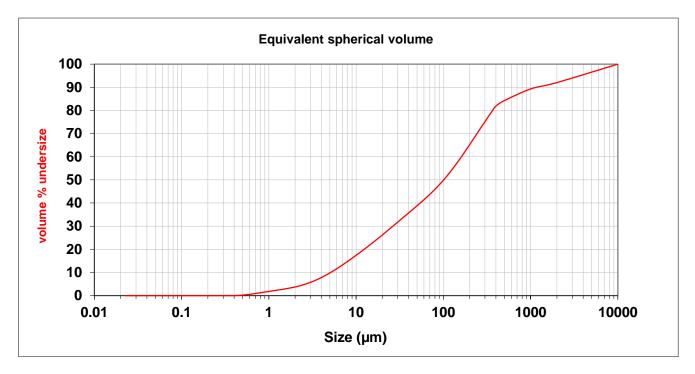
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	NC13			
Job No :	19_0992			
Lab ID No :	19_0992_07			
Analysis :	Size distribution analysis by laser diffraction (ISO1)	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	14 min sonication	Result units:	Volume	

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	0.43		3.45		54.10		41.58		0.45		0.00
3.991		63.246		251.785		500.000		2000.000		10000.00	
	Clay		Silt	Fine	e sand	Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

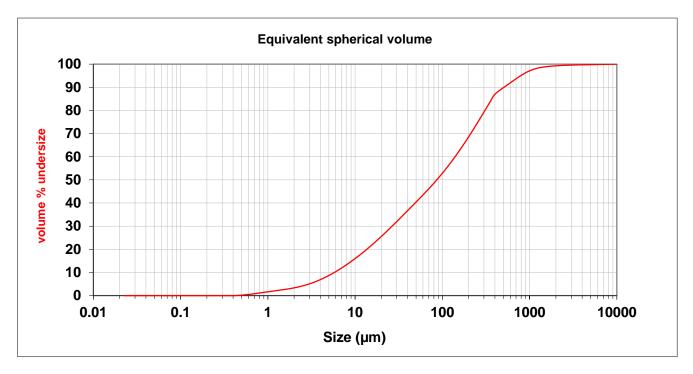
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	CH8-D			
Job No :	19_0992			
Lab ID No :	19_0992_08			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	3 min sonication	Result units:	Volume	

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	7.79		34.42		28.66		13.37		7.78		7.98
3.991		63.246		251.785		500.000		2000.000		10000.00	
	Clay		Silt	Fine	e sand	Mediu	Im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

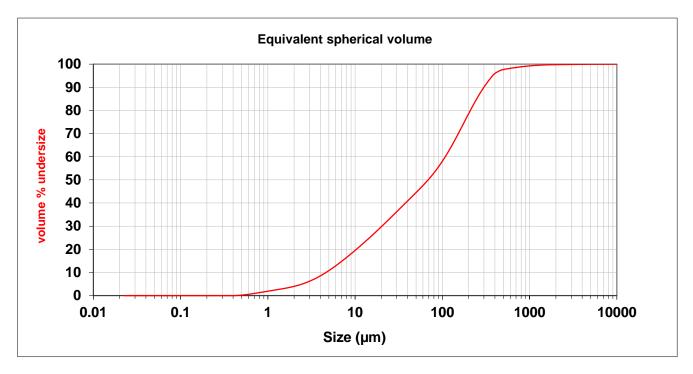
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Sonication:	6 min sonication	Result units:	Volume	
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Dispersant:	Water			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Lab ID No :	19_0992_09			
Job No :	19_0992			
Client ID:	CH11			
Client:	ARL			

Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %	[Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991		63.246			251.785		500.000		2000.00	
	6.89		37.52		30.17			15.22		9.48		0.73
3.991		63.246		251.785			500.000		2000.000		10000.00	
(Clay		Silt	Fine	e sand		Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

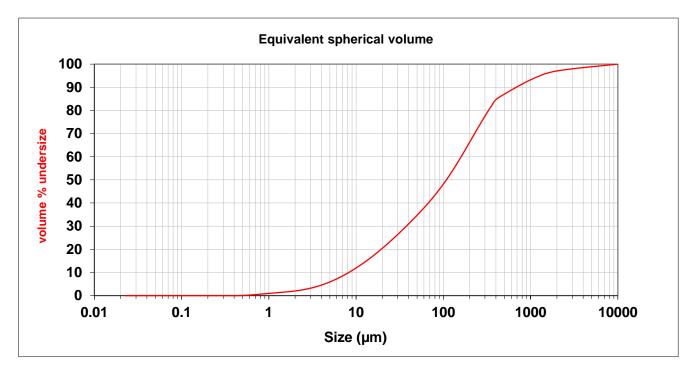
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	CH12-S			
Job No :	19_0992			
Lab ID No :	19_0992_10			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	4 min sonication	Result units:	Volume	

Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %	[Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991		63.246			251.785		500.000		2000.00	
	8.51		39.97		36.97			12.19		2.15		0.21
3.991		63.246		251.785			500.000		2000.000		10000.00	
(Clay		Silt	Fine	e sand		Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

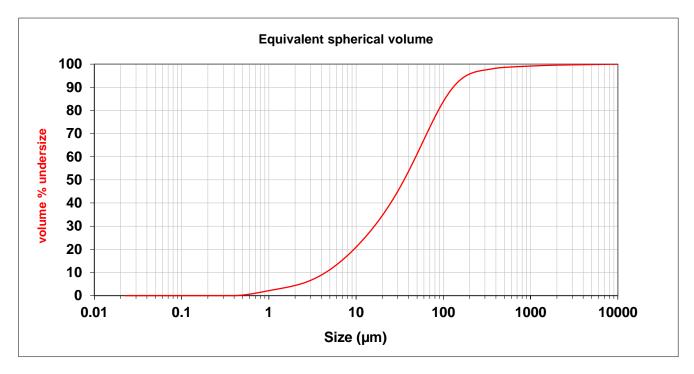
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Sonication:	3 min sonication	Result units:	Volume	
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Dispersant:	Water			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Lab ID No :	19_0992_11			
Job No :	19_0992			
Client ID:	CH12-D			
Client:	ARL			

Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %	[Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991		63.246			251.785		500.000		2000.00	
	4.52		34.34		33.89			14.27		10.02		2.95
3.991		63.246		251.785			500.000		2000.000		10000.00	
(Clay		Silt	Fine	e sand		Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

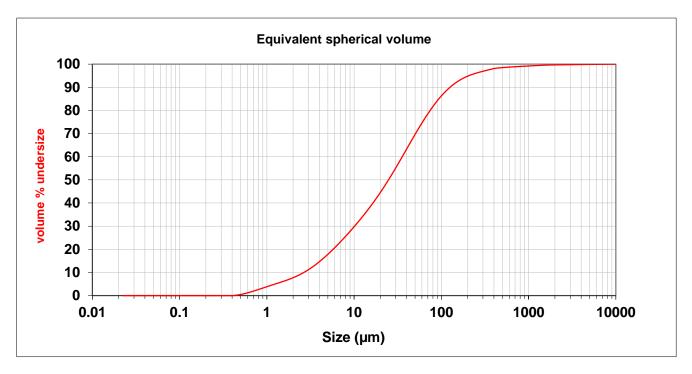
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Sonication:	15 min sonication	Result units:	Volume	
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Dispersant:	Water			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Lab ID No :	19_0992_12			
Job No :	19_0992			
Client ID:	CH13			
Client:	ARL			

Size (µm)	Vol In %	Size (µm)	Vol In %	[Size (µm)	Vol In %						
0.020		3.991			63.246		251.785		500.000		2000.00	
	8.86		60.40			27.69		1.64		0.98		0.43
3.991		63.246			251.785		500.000		2000.000		10000.00	
	Clay	5	Silt		Fine	e sand	Mediu	im sand	Coars	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

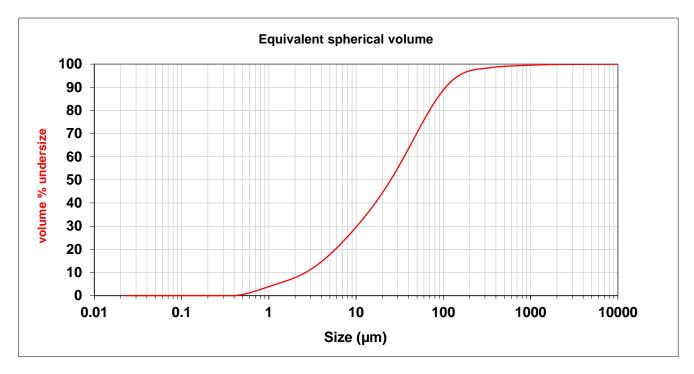
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	CH14-S			
Job No :	19_0992			
Lab ID No :	19_0992_13			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	4 min sonication	Result units:	Volume	

Size (µm)	Vol In %										
0.020		3.991		63.246		251.785		500.000		2000.00	
	14.61		61.37		20.14		2.38		1.17		0.32
3.991		63.246		251.785		500.000		2000.000		10000.00	
(Clay		Silt	Fine	e sand	Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

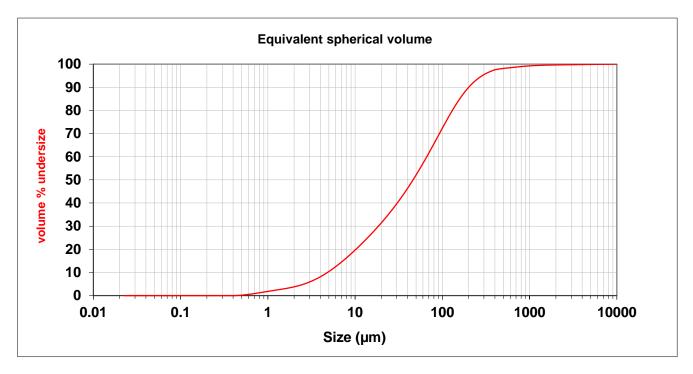
Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Client:	ARL			
Client ID:	CH14-D			
Job No :	19_0992			
Lab ID No :	19_0992_14			
Analysis :	Size distribution analysis by laser diffraction (ISO13	3320-1:1999) and wet sieving		
Dispersant:	Water			
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Sonication:	7 min sonication	Result units:	Volume	

Size (µn	n) Vol In %	Size (µm)	Vol In %	l	Size (µm)	Vol In %						
0.020		3.991			63.246		251.785		500.000		2000.00	
	14.59		62.80			20.47		1.19		0.81		0.15
3.991		63.246			251.785		500.000		2000.000		10000.00	
	Clay	5	Silt		Fine	e sand	Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)


Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Sonication:	5 min sonication	Result units:	Volume	
Additives:	10 millilitres sodium hexametaphosphate	Analysis Model:	General purpose	
Dispersant:	Water			
Analysis :	Size distribution analysis by laser diffraction (ISO1:	3320-1:1999) and wet sieving		
Lab ID No :	19_0992_15			
Job No :	19_0992			
Client ID:	CH15			
Client:	ARL			

Size (µm	ı) Vol In %	Size (µm)	Vol In %	[Size (µm)	Vol In %						
0.020		3.991			63.246		251.785		500.000		2000.00	
	8.12		50.52			34.90		4.59		1.53		0.35
3.991		63.246			251.785		500.000		2000.000		10000.00	
	Clay	5	Silt		Fine	e sand	Mediu	im sand	Coar	se sand	Gr	avel

Analyst: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Reported by: Dan Cukierski, B.Sc.(Geology), M.Sc.(Geoscience)

Approved by: Sandy Lam, B.Sc.(Multidisciplinary)

Note: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

CERTIFICATE OF ANALYSIS

Work Order	EP2001971	Page	: 1 of 33
Client		Laboratory	: Environmental Division Perth
Contact	: Russell Stevens	Contact	: Lauren Biagioni
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara WA Australia 6065
Telephone	:	Telephone	: 08 9406 1307
Project	: 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020	Date Samples Received	: 25-Feb-2020 13:00
Order number	:	Date Analysis Commenced	: 26-Feb-2020
C-O-C number	:	Issue Date	13-Mar-2020 15:57
Sampler	: Russell Stevens		
Site	:		
Quote number	: EP/101/20		Accreditation No. 825 Accredited for compliance with
No. of samples received	: 64		ISO/IEC 17025 - Testing
No. of samples analysed	: 64		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Aleksandar Vujkovic	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW	
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA	
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA	
David Viner	SENIOR LAB TECH	Perth Organics, Wangara, WA	
Matt Frost	Assistant Laboratory Manager	Brisbane Inorganics, Stafford, QLD	
Matt Frost	Assistant Laboratory Manager	Brisbane Organics, Stafford, QLD	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- TOC and TBT conducted by ALS Brisbane, NATA Site No. 818.
- PSD conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656.
- EG020-SD: Poor matrix spike recovery was obtained for copper, zinc on sample EP2001971-055 due to possible matrix interference. Results have been confirmed by re-extraction and re-analysis.
- EP132B-SD: Poor duplicate precision due to high moisture content and sample heterogeneity. Chromatogram profiles have been reviewed.
- EP132B-SD: Poor matrix spike recovery due to high moisture content and sample heterogeneity. Chromatogram profiles have been reviewed.
- EP132B-SD: LOR has been raised for various analytes on various samples due to high moisture content and/or matrix interferences.
- EP090 Organotin Analysis: The LOR for Tributyltin in sample ORA2-1 has been raised due to matrix interference.
- EN68: This analysis in accordance with National Ocean Disposal Guidelines, Commonwealth of Australia, 2002 (modified). Results reported are those determined on a 1:4 sediment/seawater elutriate without blank correction.

Sub-Matrix: ELUTRIATE (Matrix: WATER)		Clie	ent sample ID	CH3-1	CH4-1	CH6-1	Elutriate Water	
	Cl	ient sampli	ng date / time	20-Feb-2020 09:40	20-Feb-2020 09:00	18-Feb-2020 16:30	20-Feb-2020 09:30	
Compound	CAS Number	LOR	Unit	EP2001971-019	EP2001971-022	EP2001971-028	EP2001971-064	
				Result	Result	Result	Result	
EP090: Organotin Compounds (Soluble)								
Tributyltin	56573-85-4	2	ngSn/L	<2	<2	<2	<2	
EP090S: Organotin Surrogate								
Tripropyltin		5	%	46.1	39.8	56.5	91.5	

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA1-1	ORA1-2	ORA1-3	ORA2-1	ORA2-2
	Cli	ient sampli	ng date / time	20-Feb-2020 11:25	20-Feb-2020 11:30	20-Feb-2020 11:40	20-Feb-2020 12:00	20-Feb-2020 12:05
Compound	CAS Number	LOR	Unit	EP2001971-001	EP2001971-002	EP2001971-003	EP2001971-004	EP2001971-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	31.8	34.2	37.0	61.3	54.9
EA150: Particle Sizing								
Clay (<4 μm)		1	%	3	2	2	12	10
Silt (4-62 µm)		1	%	1	1	2	10	9
Fine Sand (62-250 μm)		1	%	66	76	71	63	60
Medium Sand (250-500 µm)		1	%	24	18	21	11	18
Coarse Sand (500-2000 μm)		1	%	6	3	5	4	3
Gravel (2000-10000 μm)		1	%	1	<1	<1	1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.65	2.68	2.65	2.60	2.62
EG005(ED093)-SD: Total Metals in Sec	liments by ICP-AES	\$						
Aluminium	7429-90-5	50	mg/kg	200	150	110	360	320
Iron	7439-89-6	50	mg/kg	390	330	260	1080	990
Vanadium	7440-62-2	2	mg/kg	<2	<2	<2	3	<2
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	1.91	1.93	1.37	2.86	3.28
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	0.3	0.2
Copper	7440-50-8	1.0	mg/kg	<1.0	1.8	<1.0	31.3	28.7
Lead	7439-92-1	1.0	mg/kg	1.1	<1.0	<1.0	2.3	2.5
Manganese	7439-96-5	10	mg/kg	19	16	12	17	17
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	1.4	1.2
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	7440-66-6	1.0	mg/kg	2.6	3.2	3.6	53.2	52.5
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	2.2	2.3	2.0	3.1	3.2
EG035T: Total Recoverable Mercury b	v FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	0.38	0.18	0.20	2.21	1.07
P090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	<1.0	<0.5
EP132B: Polynuclear Aromatic Hydrod		0.0	pgering		0.0			0.0
Naphthalene	91-20-3	5	µg/kg	<5	<5	<5	12	18
2-Methylnaphthalene	91-20-3	5	μg/kg μg/kg	<5	<5	<5	<5	<5
≥-mearymaphanaiene	91-07-16	5	P9/N9	· · ·	-5	-0		`

Page : 5 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA1-1	ORA1-2	ORA1-3	ORA2-1	ORA2-2
	Cli	ent sampli	ng date / time	20-Feb-2020 11:25	20-Feb-2020 11:30	20-Feb-2020 11:40	20-Feb-2020 12:00	20-Feb-2020 12:05
Compound	CAS Number	LOR	Unit	EP2001971-001	EP2001971-002	EP2001971-003	EP2001971-004	EP2001971-005
				Result	Result	Result	Result	Result
P132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	10	11
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<5	<5
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<5	<5
Phenanthrene	85-01-8	4	µg/kg	<4	<4	<4	<5	6
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	<5	6
Fluoranthene	206-44-0	4	µg/kg	<4	<4	<4	<5	<5
Pyrene	129-00-0	4	µg/kg	<4	<4	<4	<5	<5
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	<4	<5	<5
Chrysene	218-01-9	4	µg/kg	<4	<4	<4	<5	<5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	<4	<5	<5
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	<4	<5	<5
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	<4	<5	<5
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	<4	<5	<5
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<5	<5
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	<4	<5	<5
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<5	<5
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	<5	<5
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	<4	<4	<4	22	41
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	<4	<4	<5	<5
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	5	5	<5	<5
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	10	10	10	10
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	74.5	66.5	79.9	92.6	60.3
P132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	78.9	81.2	84.1	90.4	85.2
Anthracene-d10	1719-06-8	10	%	71.2	77.3	75.5	75.0	71.7
4-Terphenyl-d14	1718-51-0	10	%	85.1	73.6	93.7	119	111

Gub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA2-3	FBH1-1	FBH1-2	FBH1-3	FBH2-1
	Client sampling date / time			20-Feb-2020 12:10	18-Feb-2020 11:00	18-Feb-2020 11:10	18-Feb-2020 11:20	18-Feb-2020 10:30
Compound	CAS Number	LOR	Unit	EP2001971-006	EP2001971-007	EP2001971-008	EP2001971-009	EP2001971-010
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-	110°C)							
Moisture Content		0.1	%	47.4	40.5	40.7	39.9	42.9
EA150: Particle Sizing								
Clay (<4 µm)		1	%	5	15	13	13	13
Silt (4-62 μm)		1	%	1	12	13	12	15
Fine Sand (62-250 μm)		1	%	80	54	56	53	68
Medium Sand (250-500 μm)		1	%	13	8	8	8	2
Coarse Sand (500-2000 μm)		1	%	1	7	7	8	1
Gravel (2000-10000 μm)		1	%	<1	3	4	5	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.62	2.62	2.63	2.64	2.54
EG005(ED093)-SD: Total Metals in Sedi	ments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	190	1750	1920	2010	2850
Iron	7439-89-6	50	mg/kg	460	5030	5160	5330	6070
Vanadium	7440-62-2	2	mg/kg	<2	12	12	11	12
EG020-SD: Total Metals in Sediments b								
Arsenic	7440-38-2	1.00	mg/kg	2.06	5.82	6.26	5.42	6.68
Cadmium	7440-43-9	0.1	mg/kg	0.2	0.2	0.2	0.3	0.3
Copper	7440-50-8	1.0	mg/kg	8.9	373	460	371	349
Lead	7439-92-1	1.0	mg/kg	1.3	28.3	29.3	27.4	24.2
Manganese	7439-96-5	10	mg/kg	16	26	26	26	31
Nickel	7440-02-0	1.0	mg/kg	<1.0	3.0	3.1	3.2	4.0
Silver	7440-22-4	0.1	mg/kg	<0.1	0.2	0.2	0.2	0.4
Zinc	7440-66-6	1.0	mg/kg	18.0	320	313	287	284
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	2.9	4.4	4.6	4.8	5.8
EG035T: Total Recoverable Mercury by	/ FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	0.09	0.10	0.09	0.09
EP003: Total Organic Carbon (TOC) in S								
Total Organic Carbon		0.02	%	0.32	0.79	0.84	0.86	1.03
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	27.1	27.2	27.2	16.9
EP132B: Polynuclear Aromatic Hydroca								
Naphthalene	91-20-3	5	µg/kg	8	9	12	10	8
2-Methylnaphthalene	91-20-3	5	µg/kg	<5	<5	<5	<5	<5

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA2-3	FBH1-1	FBH1-2	FBH1-3	FBH2-1
	Client sampling date / time			20-Feb-2020 12:10	18-Feb-2020 11:00	18-Feb-2020 11:10	18-Feb-2020 11:20	18-Feb-2020 10:30
Compound	CAS Number	LOR	Unit	EP2001971-006	EP2001971-007	EP2001971-008	EP2001971-009	EP2001971-010
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	6	5	5
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	<4	24	29	23	21
Anthracene	120-12-7	4	µg/kg	<4	6	9	6	6
Fluoranthene	206-44-0	4	µg/kg	<4	47	62	49	50
Pyrene	129-00-0	4	µg/kg	<4	43	61	45	49
Benz(a)anthracene	56-55-3	4	µg/kg	<4	21	28	22	24
Chrysene	218-01-9	4	µg/kg	<4	18	25	21	22
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	33	42	36	36
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	15	22	16	17
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	17	25	19	22
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	23	31	25	27
Perylene	198-55-0	4	µg/kg	<4	5	7	5	6
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	23	30	26	28
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	4	5	4	5
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	18	24	20	22
Coronene	191-07-1	5	µg/kg	<5	7	7	8	8
Sum of PAHs		4	µg/kg	8	313	429	340	356
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	36	48	39	42
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	36	48	39	42
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	36	48	39	42
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	82.8	82.0	75.0	61.6	89.4
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	76.6	74.6	86.1	83.9	80.1
Anthracene-d10	1719-06-8	10	%	71.7	72.2	76.3	74.8	74.3
4-Terphenyl-d14	1718-51-0	10	%	86.9	97.1	110	91.8	91.9

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	FBH2-2	FBH2-3	CH1-1	CH1-2	CH1-3
	Cli	ent sampli	ng date / time	18-Feb-2020 10:40	18-Feb-2020 10:50	19-Feb-2020 10:50	19-Feb-2020 11:00	19-Feb-2020 11:15
Compound	CAS Number	LOR	Unit	EP2001971-011	EP2001971-012	EP2001971-013	EP2001971-014	EP2001971-015
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	43.9	44.7	51.7	53.6	49.6
EA150: Particle Sizing								
Clay (<4 μm)		1	%	10	12	21	25	19
Silt (4-62 µm)		1	%	19	16	28	26	27
Fine Sand (62-250 μm)		1	%	68	69	45	45	47
Medium Sand (250-500 μm)		1	%	2	2	5	1	4
Coarse Sand (500-2000 µm)		1	%	1	1	2	2	2
Gravel (2000-10000 μm)		1	%	<1	<1	<1	1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.51	2.51	2.53	2.52	2.54
EG005(ED093)-SD: Total Metals in Sed	liments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	2200	3100	2760	2310	2820
Iron	7439-89-6	50	mg/kg	4760	6440	6770	6060	6800
Vanadium	7440-62-2	2	mg/kg	10	13	17	16	17
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.83	7.18	7.49	7.45	7.13
Cadmium	7440-43-9	0.1	mg/kg	0.2	0.3	1.1	0.9	1.0
Copper	7440-50-8	1.0	mg/kg	286	370	206	184	198
Lead	7439-92-1	1.0	mg/kg	22.7	27.1	34.4	33.6	37.5
Manganese	7439-96-5	10	mg/kg	26	32	55	52	109
Nickel	7440-02-0	1.0	mg/kg	4.2	4.5	4.8	4.9	5.2
Silver	7440-22-4	0.1	mg/kg	0.2	0.3	0.4	0.4	0.5
Zinc	7440-66-6	1.0	mg/kg	265	303	342	308	336
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	4.4	6.3	5.6	5.0	5.5
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.05	0.10	0.06	0.05	0.05
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	1.08	1.19	1.67	1.85	1.84
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	17.9	21.7	2.1	2.0	1.4
-		0.0	pgoling			2	2.0	1.7
EP132B: Polynuclear Aromatic Hydroc Naphthalene		5	ug/kg	8	8	12	10	9
•	91-20-3	5	µg/kg	<5	8 <5	12	10	9 <5
2-Methylnaphthalene	91-57-6	5	µg/kg	<0	<0	1	6	<0

Page : 9 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	FBH2-2	FBH2-3	CH1-1	CH1-2	CH1-3
	Cli	ent sampli	ng date / time	18-Feb-2020 10:40	18-Feb-2020 10:50	19-Feb-2020 10:50	19-Feb-2020 11:00	19-Feb-2020 11:15
Compound	CAS Number	LOR	Unit	EP2001971-011	EP2001971-012	EP2001971-013	EP2001971-014	EP2001971-015
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	4	4	<5	<5	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<5	<5	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<5	<5	<4
Phenanthrene	85-01-8	4	µg/kg	21	20	21	17	18
Anthracene	120-12-7	4	µg/kg	7	7	5	8	5
Fluoranthene	206-44-0	4	µg/kg	45	44	32	26	29
Pyrene	129-00-0	4	µg/kg	44	43	30	26	28
Benz(a)anthracene	56-55-3	4	µg/kg	21	21	14	13	14
Chrysene	218-01-9	4	µg/kg	20	18	12	10	12
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	34	33	21	19	19
Benzo(k)fluoranthene	207-08-9	4	µg/kg	16	18	10	8	10
Benzo(e)pyrene	192-97-2	4	µg/kg	19	20	12	12	12
Benzo(a)pyrene	50-32-8	4	µg/kg	24	25	17	16	17
Perylene	198-55-0	4	µg/kg	5	6	<5	<5	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	24	25	15	14	14
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	4	4	<5	<5	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	19	20	12	10	10
Coronene	191-07-1	5	µg/kg	8	7	<5	<5	<5
Sum of PAHs		4	µg/kg	323	323	220	195	197
Benzo(a)pyrene TEQ (zero)		4	µg/kg	37	39	23	21	22
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	37	39	25	23	24
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	37	39	27	25	26
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	88.9	97.2	75.5	79.7	73.1
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	73.3	70.5	92.6	82.1	81.6
Anthracene-d10	1719-06-8	10	%	71.6	70.1	78.9	71.6	71.2
4-Terphenyl-d14	1718-51-0	10	%	94.6	81.1	126	85.9	84.4

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH2-1	CH2-2	CH2-3	CH3-1	CH3-2
· · · · · · · · · · · · · · · · · · ·	Clie	ent sampli	ng date / time	20-Feb-2020 10:50	20-Feb-2020 10:55	20-Feb-2020 11:00	20-Feb-2020 09:40	20-Feb-2020 09:50
Compound	CAS Number	LOR	Unit	EP2001971-016	EP2001971-017	EP2001971-018	EP2001971-019	EP2001971-020
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	40.0	43.0	44.2	37.3	38.4
A150: Particle Sizing								
Clay (<4 μm)		1	%	20	19	23	17	13
Silt (4-62 µm)		1	%	16	19	20	11	19
Fine Sand (62-250 μm)		1	%	49	46	46	41	37
Medium Sand (250-500 μm)		1	%	6	9	8	18	17
Coarse Sand (500-2000 µm)		1	%	7	4	3	9	10
Gravel (2000-10000 μm)		1	%	2	2	<1	3	5
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.59	2.58	2.58	2.68	2.64
EG005(ED093)-SD: Total Metals in Sed	iments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1440	1910	2220	1630	1870
Iron	7439-89-6	50	mg/kg	4350	5540	6190	4730	5410
Vanadium	7440-62-2	2	mg/kg	11	13	15	12	12
EG020-SD: Total Metals in Sediments I	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.11	6.31	6.88	5.47	5.53
Cadmium	7440-43-9	0.1	mg/kg	1.7	2.3	3.5	1.3	1.7
Copper	7440-50-8	1.0	mg/kg	196	252	327	171	208
Lead	7439-92-1	1.0	mg/kg	50.9	62.6	85.2	42.5	48.4
Manganese	7439-96-5	10	mg/kg	48	55	77	49	54
Nickel	7440-02-0	1.0	mg/kg	3.6	3.8	3.8	3.5	3.8
Silver	7440-22-4	0.1	mg/kg	0.5	0.8	0.8	0.5	0.5
Zinc	7440-66-6	1.0	mg/kg	517	658	972	435	540
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.5	4.1	4.6	3.6	4.0
EG035T: Total Recoverable Mercury b	v FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.04	0.05	0.06	0.04	0.04
N68: Seawater Elutriate Testing Proc								
Seawater Sampling Date		-	-				27/02/2020	
EP003: Total Organic Carbon (TOC) in								1
Total Organic Carbon (TOC) in		0.02	%	1.19	1.29	1.29	0.90	0.88
-		0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.00	0.00
P090: Organotin Compounds Tributyltin	E6570 05 4	0.5	µgSn/kg	2.9	2.7	3.2	5.3	2.4
mouyilii	56573-85-4	0.0	pgon/kg	2 .J	2.1	J.2	U.U	2.4

Page : 11 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH2-1	CH2-2	CH2-3	CH3-1	CH3-2
	Cli	ient sampli	ng date / time	20-Feb-2020 10:50	20-Feb-2020 10:55	20-Feb-2020 11:00	20-Feb-2020 09:40	20-Feb-2020 09:50
Compound	CAS Number	LOR	Unit	EP2001971-016	EP2001971-017	EP2001971-018	EP2001971-019	EP2001971-020
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	µg/kg	17	10	43	41	7
2-Methylnaphthalene	91-57-6	5	µg/kg	19	<5	20	9	<5
Acenaphthylene	208-96-8	4	µg/kg	6	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	75	<4	36	4	<4
Fluorene	86-73-7	4	µg/kg	54	<4	39	5	<4
Phenanthrene	85-01-8	4	µg/kg	387	37	283	50	33
Anthracene	120-12-7	4	µg/kg	48	6	26	8	8
Fluoranthene	206-44-0	4	µg/kg	340	69	193	49	76
Pyrene	129-00-0	4	µg/kg	320	58	154	44	66
Benz(a)anthracene	56-55-3	4	µg/kg	125	31	58	16	38
Chrysene	218-01-9	4	µg/kg	90	26	46	13	31
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	123	43	56	19	43
Benzo(k)fluoranthene	207-08-9	4	µg/kg	66	21	26	8	20
Benzo(e)pyrene	192-97-2	4	µg/kg	78	30	35	10	23
Benzo(a)pyrene	50-32-8	4	µg/kg	107	33	48	14	31
Perylene	198-55-0	4	µg/kg	25	9	11	<4	8
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	87	32	34	11	22
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	17	8	8	<4	6
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	68	25	27	8	18
Coronene	191-07-1	5	µg/kg	20	6	7	<5	<5
^ Sum of PAHs		4	µg/kg	2070	444	1150	309	430
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	164	54	74	19	49
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	164	54	74	21	49
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	164	54	74	23	49
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	97.5	80.3	73.9	87.2	68.4
EP132T: Base/Neutral Extractable \$	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	98.0	93.0	86.2	78.1	92.2
Anthracene-d10	1719-06-8	10	%	83.0	79.6	72.8	71.5	80.6
4-Terphenyl-d14	1718-51-0	10	%	103	98.9	89.4	89.2	102

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH3-3	CH4-1	CH4-2	CH4-3	CH5-1
	Clie	ent sampli	ng date / time	20-Feb-2020 10:00	20-Feb-2020 09:00	20-Feb-2020 09:15	20-Feb-2020 09:20	18-Feb-2020 17:10
Compound	CAS Number	LOR	Unit	EP2001971-021	EP2001971-022	EP2001971-023	EP2001971-024	EP2001971-025
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	37.4	44.6	44.4	36.1	37.1
A150: Particle Sizing								
Clay (<4 μm)		1	%	14	23	16	11	18
Silt (4-62 µm)		1	%	18	23	29	12	13
Fine Sand (62-250 μm)		1	%	39	38	42	16	33
Medium Sand (250-500 μm)		1	%	17	10	8	12	16
Coarse Sand (500-2000 µm)		1	%	10	5	4	16	15
Gravel (2000-10000 µm)		1	%	3	1	1	33	5
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.64	2.60	2.55	2.62	2.56
EG005(ED093)-SD: Total Metals in Sed	iments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1670	1840	2480	1790	1720
Iron	7439-89-6	50	mg/kg	4570	5400	6560	14800	4590
Vanadium	7440-62-2	2	mg/kg	12	14	16	13	12
EG020-SD: Total Metals in Sediments b								
Arsenic	7440-38-2	1.00	mg/kg	5.07	6.14	6.60	7.72	5.43
Cadmium	7440-43-9	0.1	mg/kg	1.7	1.3	1.7	1.0	0.9
Copper	7440-50-8	1.0	mg/kg	182	198	251	161	135
Lead	7439-92-1	1.0	mg/kg	40.4	46.6	46.8	35.7	27.9
Manganese	7439-96-5	10	mg/kg	53	50	55	159	46
Nickel	7440-02-0	1.0	mg/kg	3.3	3.8	4.1	7.1	3.2
Silver	7440-22-4	0.1	mg/kg	0.6	0.6	0.6	0.4	0.4
Zinc	7440-66-6	1.0	mg/kg	512	431	557	372	296
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.6	4.2	4.7	3.9	3.6
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.04	0.06	0.05	0.05
N68: Seawater Elutriate Testing Proce								
Seawater Sampling Date		-	-		27/02/2020			
P003: Total Organic Carbon (TOC) in								1
Total Organic Carbon (TOC) In		0.02	%	0.72	1.03	0.93	0.63	0.73
-		0.02	/0	V./ Z	1.03	0.00	0.00	0.75
P090: Organotin Compounds		0.5		2.0	3.0	3.2	4.0	2.1
Tributyltin	56573-85-4	0.5	µgSn/kg	3.8	3.0	3.2	4.9	2.1

Page : 13 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	СН3-3	CH4-1	CH4-2	CH4-3	CH5-1
	Cli	ient sampli	ng date / time	20-Feb-2020 10:00	20-Feb-2020 09:00	20-Feb-2020 09:15	20-Feb-2020 09:20	18-Feb-2020 17:10
Compound	CAS Number	LOR	Unit	EP2001971-021	EP2001971-022	EP2001971-023	EP2001971-024	EP2001971-025
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	µg/kg	6	11	9	7	8
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	6	<5	<5	<5
Acenaphthylene	208-96-8	4	µg/kg	<4	4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	9	5	<4	14
Fluorene	86-73-7	4	µg/kg	<4	8	5	<4	12
Phenanthrene	85-01-8	4	µg/kg	14	153	63	11	131
Anthracene	120-12-7	4	µg/kg	4	15	10	<4	21
Fluoranthene	206-44-0	4	µg/kg	22	176	79	20	195
Pyrene	129-00-0	4	µg/kg	23	142	66	20	121
Benz(a)anthracene	56-55-3	4	µg/kg	10	51	28	12	51
Chrysene	218-01-9	4	µg/kg	9	41	23	10	36
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	13	53	30	18	46
Benzo(k)fluoranthene	207-08-9	4	µg/kg	7	27	17	9	22
Benzo(e)pyrene	192-97-2	4	µg/kg	8	28	20	11	25
Benzo(a)pyrene	50-32-8	4	µg/kg	11	39	25	14	38
Perylene	198-55-0	4	µg/kg	<4	8	6	4	10
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	9	23	18	13	22
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	6	4	<4	8
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	6	18	13	9	19
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
^ Sum of PAHs		4	µg/kg	142	818	421	158	779
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	15	60	38	19	60
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	17	60	38	21	60
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	19	60	38	23	60
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	79.4	96.0	104	92.5	88.3
EP132T: Base/Neutral Extractable \$	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	82.0	77.2	82.9	85.8	80.6
Anthracene-d10	1719-06-8	10	%	70.6	70.6	73.5	77.3	76.2
4-Terphenyl-d14	1718-51-0	10	%	118	83.7	93.4	93.6	96.4

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH5-2	CH5-3	CH6-1	CH6-2	CH6-3
	Clie	ent sampli	ng date / time	18-Feb-2020 17:15	18-Feb-2020 17:20	18-Feb-2020 16:30	18-Feb-2020 16:40	18-Feb-2020 16:45
Compound	CAS Number	LOR	Unit	EP2001971-026	EP2001971-027	EP2001971-028	EP2001971-029	EP2001971-030
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	32.7	32.9	37.6	39.2	34.8
A150: Particle Sizing								
Clay (<4 μm)		1	%	13	16	17	19	13
Silt (4-62 µm)		1	%	12	9	12	10	13
Fine Sand (62-250 μm)		1	%	31	36	38	38	33
Medium Sand (250-500 μm)		1	%	19	19	19	18	23
Coarse Sand (500-2000 μm)		1	%	18	15	13	13	15
Gravel (2000-10000 μm)		1	%	7	5	1	1	3
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.57	2.57	2.60	2.57	2.56
EG005(ED093)-SD: Total Metals in Sed	iments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1620	1490	1230	1700	1580
Iron	7439-89-6	50	mg/kg	5110	4600	3600	4360	4090
Vanadium	7440-62-2	2	mg/kg	11	10	11	12	11
EG020-SD: Total Metals in Sediments I	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.54	4.68	4.98	5.47	4.98
Cadmium	7440-43-9	0.1	mg/kg	1.1	0.9	0.7	1.0	0.9
Copper	7440-50-8	1.0	mg/kg	145	117	124	142	131
Lead	7439-92-1	1.0	mg/kg	27.6	22.5	28.1	27.6	25.6
Manganese	7439-96-5	10	mg/kg	46	44	44	49	55
Nickel	7440-02-0	1.0	mg/kg	3.2	2.8	2.5	3.0	2.9
Silver	7440-22-4	0.1	mg/kg	0.4	0.3	0.4	0.3	0.3
Zinc	7440-66-6	1.0	mg/kg	327	282	233	309	285
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.6	3.2	3.1	3.8	3.6
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.03	0.03	0.03	0.04	0.03
EN68: Seawater Elutriate Testing Proc								
Seawater Sampling Date		-	-			27/02/2020		
EP003: Total Organic Carbon (TOC) in								1
Total Organic Carbon (TOC) in		0.02	%	0.71	0.48	0.59	0.73	0.62
-		0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.00	0.10	0.02
P090: Organotin Compounds Tributyltin	E6570 05 4	0.5	µgSn/kg	1.4	1.7	8.2	2.2	1.6
mouyiiii	56573-85-4	0.0	µg3il/kg	1.4	1.7	0.2	£.£	1.0

Page : 15 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH5-2	CH5-3	CH6-1	CH6-2	CH6-3
	Cli	ient sampli	ng date / time	18-Feb-2020 17:15	18-Feb-2020 17:20	18-Feb-2020 16:30	18-Feb-2020 16:40	18-Feb-2020 16:45
Compound	CAS Number	LOR	Unit	EP2001971-026	EP2001971-027	EP2001971-028	EP2001971-029	EP2001971-030
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	µg/kg	6	7	11	10	6
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	<5	<5	<5
Acenaphthylene	208-96-8	4	µg/kg	10	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	5	<4	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	31	16	13	15	5
Anthracene	120-12-7	4	µg/kg	20	<4	<4	8	<4
Fluoranthene	206-44-0	4	µg/kg	58	19	17	23	7
Pyrene	129-00-0	4	µg/kg	52	17	16	21	6
Benz(a)anthracene	56-55-3	4	µg/kg	52	8	8	10	<4
Chrysene	218-01-9	4	µg/kg	37	6	7	8	<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	90	10	12	13	5
Benzo(k)fluoranthene	207-08-9	4	µg/kg	37	5	6	8	<4
Benzo(e)pyrene	192-97-2	4	µg/kg	47	6	7	8	<4
Benzo(a)pyrene	50-32-8	4	µg/kg	68	9	9	10	<4
Perylene	198-55-0	4	µg/kg	16	<4	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	47	6	6	7	<4
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	15	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	39	5	4	5	<4
Coronene	191-07-1	5	µg/kg	6	<5	<5	<5	<5
^ Sum of PAHs		4	µg/kg	636	114	116	146	29
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	106	12	12	14	<4
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	106	14	14	16	5
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	106	16	16	18	10
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	57.4	87.2	97.8	104	95.4
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	88.8	97.6	82.8	87.0	74.2
Anthracene-d10	1719-06-8	10	%	79.9	82.6	73.5	76.5	73.0
4-Terphenyl-d14	1718-51-0	10	%	108	101	87.8	72.1	76.5

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH9-1	CH9-2	СН9-3	CH10-1	CH10-2
	Clie	ent sampli	ng date / time	18-Feb-2020 17:45	18-Feb-2020 18:00	18-Feb-2020 18:10	19-Feb-2020 11:40	19-Feb-2020 11:45
Compound	CAS Number	LOR	Unit	EP2001971-031	EP2001971-032	EP2001971-033	EP2001971-034	EP2001971-035
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	37.9	28.9	28.7	56.2	56.2
EA150: Particle Sizing								
Clay (<4 µm)		1	%	14	7	8	15	17
Silt (4-62 μm)		1	%	11	7	4	20	15
Fine Sand (62-250 µm)		1	%	19	12	11	49	41
Medium Sand (250-500 μm)		1	%	10	12	11	10	8
Coarse Sand (500-2000 μm)		1	%	19	28	23	5	11
Gravel (2000-10000 μm)		1	%	29	34	43	1	8
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55	2.55	2.55	2.35	2.35
EG005(ED093)-SD: Total Metals in Se	diments by ICP-AFS							
Aluminium	7429-90-5	50	mg/kg	2440	1120	980	1720	1440
Iron	7439-89-6	50	mg/kg	4660	2920	2620	4220	3460
Vanadium	7440-62-2	2	mg/kg	14	13	10	11	12
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	6.51	5.15	4.41	6.00	6.35
Cadmium	7440-43-9	0.1	mg/kg	0.9	0.5	0.4	0.5	0.5
Copper	7440-50-8	1.0	mg/kg	146	47.4	50.6	74.5	50.6
Lead	7439-92-1	1.0	mg/kg	37.6	10.5	11.1	14.3	10.0
Manganese	7439-96-5	10	mg/kg	67	69	69	37	54
Nickel	7440-02-0	1.0	mg/kg	3.5	2.1	1.7	3.7	3.0
Silver	7440-22-4	0.1	mg/kg	0.5	0.2	0.1	0.3	0.1
Zinc	7440-66-6	1.0	mg/kg	305	111	122	147	101
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	4.4	3.1	2.8	3.7	3.8
EG035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.01	0.02	0.03	0.02
EP003: Total Organic Carbon (TOC) ir								
Total Organic Carbon (TOC) In		0.02	%	0.38	0.36	0.23	2.16	1.64
		0.02	,,,	0.00	0.00	0.20	2.10	1.04
EP090: Organotin Compounds Tributyltin	50572.05.4	0.5		1 2	1.4	0.0	1.4	0.9
-	56573-85-4	0.5	µgSn/kg	1.3	1.4	0.9	1.4	0.9
EP132B: Polynuclear Aromatic Hydro		_				-		
Naphthalene	91-20-3	5	µg/kg	6	6	<5	16	23
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	<5	7	<5

Page : 17 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH9-1	CH9-2	СН9-3	CH10-1	CH10-2
	Cli	ent sampli	ng date / time	18-Feb-2020 17:45	18-Feb-2020 18:00	18-Feb-2020 18:10	19-Feb-2020 11:40	19-Feb-2020 11:45
Compound	CAS Number	LOR	Unit	EP2001971-031	EP2001971-032	EP2001971-033	EP2001971-034	EP2001971-035
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<5	6
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<5	<5
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<5	<5
Phenanthrene	85-01-8	4	µg/kg	12	10	<4	19	8
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	<5	<5
Fluoranthene	206-44-0	4	µg/kg	16	11	4	25	18
Pyrene	129-00-0	4	µg/kg	16	9	5	21	16
Benz(a)anthracene	56-55-3	4	µg/kg	8	<4	<4	11	9
Chrysene	218-01-9	4	µg/kg	6	<4	<4	9	8
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	10	5	<4	15	10
Benzo(k)fluoranthene	207-08-9	4	µg/kg	5	<4	<4	10	6
Benzo(e)pyrene	192-97-2	4	µg/kg	6	<4	<4	8	7
Benzo(a)pyrene	50-32-8	4	µg/kg	8	<4	<4	10	8
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<5	<5
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	5	<4	<4	8	5
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<5	<5
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	8	7
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	98	41	9	167	131
Benzo(a)pyrene TEQ (zero)		4	µg/kg	10	<4	<4	14	11
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	13	5	5	16	13
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	15	10	10	18	15
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	86.4	89.2	97.0	91.6	76.3
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	78.9	85.4	78.7	77.2	86.7
Anthracene-d10	1719-06-8	10	%	72.2	75.0	72.2	85.6	74.5
4-Terphenyl-d14	1718-51-0	10	%	88.3	89.3	86.2	73.4	96.2

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH10-3	YM1-1	YM1-2	YM1-3	TB1-1
	Clie	ent sampli	ng date / time	19-Feb-2020 11:50	18-Feb-2020 12:00	18-Feb-2020 12:10	18-Feb-2020 12:15	18-Feb-2020 13:00
Compound	CAS Number	LOR	Unit	EP2001971-036	EP2001971-037	EP2001971-038	EP2001971-039	EP2001971-040
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	55.8	39.1	31.7	29.0	29.6
EA150: Particle Sizing								
Clay (<4 μm)		1	%	18	17	13	10	6
Silt (4-62 µm)		1	%	22	17	4	10	4
Fine Sand (62-250 μm)		1	%	47	24	23	30	59
Medium Sand (250-500 µm)		1	%	8	7	9	15	13
Coarse Sand (500-2000 μm)		1	%	4	9	15	21	15
Gravel (2000-10000 μm)		1	%	1	27	36	14	4
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.33	2.65	2.69	2.69	2.66
EG005(ED093)-SD: Total Metals in Sec	liments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1260	2920	2010	1880	590
Iron	7439-89-6	50	mg/kg	3480	7180	4980	3780	1120
Vanadium	7440-62-2	2	mg/kg	10	18	10	11	4
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	6.12	5.63	4.56	3.46	2.62
Cadmium	7440-43-9	0.1	mg/kg	0.4	0.2	0.1	0.1	0.1
Copper	7440-50-8	1.0	mg/kg	62.6	116	162	43.7	7.6
Lead	7439-92-1	1.0	mg/kg	12.9	32.6	70.4	11.8	5.8
Manganese	7439-96-5	10	mg/kg	30	46	40	28	23
Nickel	7440-02-0	1.0	mg/kg	3.3	4.8	3.1	2.6	1.0
Silver	7440-22-4	0.1	mg/kg	0.2	0.1	<0.1	<0.1	<0.1
Zinc	7440-66-6	1.0	mg/kg	113	113	53.5	53.9	21.6
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.3	5.0	3.8	3.6	1.8
EG035T: Total Recoverable Mercury b	ov FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.14	0.08	0.05	0.03
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	2.34	0.96	0.68	0.43	0.44
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	1.1	73.5	51.5	19.8	<0.5
EP132B: Polynuclear Aromatic Hydrod		0.0	gog					0.0
Naphthalene	91-20-3	5	µg/kg	22	15	11	7	9
2-Methylnaphthalene	91-20-3	5	μg/kg μg/kg	<5	<5	<5	<5	9 <5
z-mearymaphanaiene	91-07-0	5	P9/N9	-0	10		-0	<u>ت</u>

Page : 19 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH10-3	YM1-1	YM1-2	YM1-3	TB1-1
	Cli	ent sampli	ng date / time	19-Feb-2020 11:50	18-Feb-2020 12:00	18-Feb-2020 12:10	18-Feb-2020 12:15	18-Feb-2020 13:00
Compound	CAS Number	LOR	Unit	EP2001971-036	EP2001971-037	EP2001971-038	EP2001971-039	EP2001971-040
			-	Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	6	14	9	6	10
Acenaphthene	83-32-9	4	µg/kg	<5	14	4	<4	<4
Fluorene	86-73-7	4	µg/kg	<5	9	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	10	79	26	42	10
Anthracene	120-12-7	4	µg/kg	<5	20	9	10	12
Fluoranthene	206-44-0	4	µg/kg	15	180	79	100	56
Pyrene	129-00-0	4	µg/kg	14	160	70	86	50
Benz(a)anthracene	56-55-3	4	µg/kg	7	94	48	55	36
Chrysene	218-01-9	4	µg/kg	6	81	37	40	24
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	11	125	61	70	40
Benzo(k)fluoranthene	207-08-9	4	µg/kg	6	58	30	29	20
Benzo(e)pyrene	192-97-2	4	µg/kg	6	57	29	32	18
Benzo(a)pyrene	50-32-8	4	µg/kg	8	94	46	53	39
Perylene	198-55-0	4	µg/kg	<5	21	10	13	9
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	5	59	30	31	19
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<5	17	8	8	4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<5	51	25	26	17
Coronene	191-07-1	5	µg/kg	<5	9	<5	<5	<5
Sum of PAHs		4	µg/kg	116	1160	532	608	373
Benzo(a)pyrene TEQ (zero)		4	µg/kg	10	145	71	80	55
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	13	145	71	80	55
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	15	145	71	80	55
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	70.6	75.8	94.9	108	106
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	97.9	77.5	89.7	87.3	76.4
Anthracene-d10	1719-06-8	10	%	76.4	75.3	79.7	81.1	71.5
4-Terphenyl-d14	1718-51-0	10	%	93.9	101	93.8	102	78.4

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TB1-2	TB1-3	CS1-1	CS1-2	CS1-3
	Clie	ent sampli	ng date / time	18-Feb-2020 13:05	18-Feb-2020 13:10	18-Feb-2020 01:50	18-Feb-2020 15:10	18-Feb-2020 15:15
Compound	CAS Number	LOR	Unit	EP2001971-041	EP2001971-042	EP2001971-043	EP2001971-044	EP2001971-045
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	31.8	30.2	27.4	29.0	26.5
EA150: Particle Sizing								
Clay (<4 µm)		1	%	4	3	<1	1	2
Silt (4-62 μm)		1	%	6	5	<1	1	<1
Fine Sand (62-250 μm)		1	%	55	62	11	4	9
Medium Sand (250-500 μm)		1	%	9	11	56	46	57
Coarse Sand (500-2000 μm)		1	%	20	14	27	48	29
Gravel (2000-10000 μm)		1	%	6	5	6	1	4
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.65	2.44	2.53	2.45	2.51
EG005(ED093)-SD: Total Metals in Sec	diments by ICP-AFS							
Aluminium	7429-90-5	50	mg/kg	500	560	420	430	400
Iron	7439-89-6	50	mg/kg	920	930	830	800	770
Vanadium	7440-62-2	2	mg/kg	3	3	4	4	4
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	2.09	2.14	2.46	2.62	2.38
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.2	0.5	0.1
Copper	7440-50-8	1.0	mg/kg	7.1	7.4	<1.0	<1.0	<1.0
Lead	7439-92-1	1.0	mg/kg	5.2	5.5	1.8	1.7	1.7
Manganese	7439-96-5	10	mg/kg	22	22	30	28	28
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Zinc	7440-66-6	1.0	mg/kg	20.4	16.8	3.7	14.1	2.7
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	1.9	1.9	1.6	1.5	1.4
EG035T: Total Recoverable Mercury I								1
Mercury	7439-97-6	0.01	mg/kg	0.02	0.05	<0.01	<0.01	<0.01
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon (TOC) In		0.02	%	0.46	0.18	0.14	0.15	0.12
		0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			vr	0.1.0	5.12
EP090: Organotin Compounds Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
-		0.5	pySn/kg	-0.0	N.0	-0.0	NU.U	-0.0
EP132B: Polynuclear Aromatic Hydro		E	uality.	42	C	~5	< ^E	-
Naphthalene	91-20-3	5	µg/kg	12	6	<5	<5	5
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	<5	<5	<5

Page : 21 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TB1-2	TB1-3	CS1-1	CS1-2	CS1-3
	Cli	ent sampli	ng date / time	18-Feb-2020 13:05	18-Feb-2020 13:10	18-Feb-2020 01:50	18-Feb-2020 15:10	18-Feb-2020 15:15
Compound	CAS Number	LOR	Unit	EP2001971-041	EP2001971-042	EP2001971-043	EP2001971-044	EP2001971-045
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<4	4
Phenanthrene	85-01-8	4	µg/kg	<10	<4	<4	<4	6
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	<4	6
Fluoranthene	206-44-0	4	µg/kg	6	4	<4	<4	10
Pyrene	129-00-0	4	µg/kg	5	12	<4	<4	12
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	<4	<4	14
Chrysene	218-01-9	4	µg/kg	<4	6	<4	<4	15
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	4	4	<4	5	17
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	<4	7	18
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	<4	<4	<4
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	4	<4	<4	<20
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	<4	<4	9
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	5	11
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	6	10
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	27	36	<4	23	137
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	4	<4	7	17
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	7	5	9	19
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	10	10	11	21
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	101	87.4	58.8	98.3	98.2
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	78.8	70.3	73.2	76.8	73.7
Anthracene-d10	1719-06-8	10	%	72.2	99.5	83.1	77.4	95.4
4-Terphenyl-d14	1718-51-0	10	%	76.3	88.0	108	92.6	91.8

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CS2-1	CS2-2	CS2-3	CH7-1	CH7-2
· · · · · · · · · · · · · · · · · · ·	Cli	ent sampli	ng date / time	18-Feb-2020 15:30	18-Feb-2020 15:35	18-Feb-2020 15:45	19-Feb-2020 10:00	19-Feb-2020 10:05
Compound	CAS Number	LOR	Unit	EP2001971-046	EP2001971-047	EP2001971-048	EP2001971-049	EP2001971-050
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	19.8	20.6	21.4	40.2	42.4
EA150: Particle Sizing								
Clay (<4 µm)		1	%	1	1	<1	18	23
Silt (4-62 µm)		1	%	1	<1	1	17	14
Fine Sand (62-250 μm)		1	%	1	3	1	47	45
Medium Sand (250-500 µm)		1	%	56	59	53	13	13
Coarse Sand (500-2000 μm)		1	%	41	35	42	5	4
Gravel (2000-10000 μm)		1	%	1	1	3	<1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55	2.62	2.62	2.59	2.44
EG005(ED093)-SD: Total Metals in Sec	liments by ICP-AES	;						
Aluminium	7429-90-5	50	mg/kg	420	460	440	1650	1660
Iron	7439-89-6	50	mg/kg	900	990	1010	4350	4440
Vanadium	7440-62-2	2	mg/kg	5	5	6	13	13
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	3.81	4.24	4.25	5.47	5.48
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.1	0.9	0.8
Copper	7440-50-8	1.0	mg/kg	<1.0	<1.0	<1.0	140	140
Lead	7439-92-1	1.0	mg/kg	1.6	1.6	1.6	25.7	28.6
Manganese	7439-96-5	10	mg/kg	31	33	38	52	50
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	3.5	3.0
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1	0.5	0.5
Zinc	7440-66-6	1.0	mg/kg	1.9	2.1	3.0	288	252
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	1.5	1.5	1.5	3.6	3.8
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	0.04	0.04
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	0.11	0.12	0.11	0.94	0.76
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	2.5	2.4
-		0.0	pgoning	-0.0	-0.0	-0.0	2.0	4 . ..
EP132B: Polynuclear Aromatic Hydrod Naphthalene		5	ug/kg	<5	<5	<5	8	7
•	91-20-3	5	µg/kg	<5	<5	<5	8 <5	<5
2-Methylnaphthalene	91-57-6	5	µg/kg	<0	<0	<0	<0	<5

Page : 23 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CS2-1	CS2-2	CS2-3	CH7-1	CH7-2
	Cli	ent sampli	ng date / time	18-Feb-2020 15:30	18-Feb-2020 15:35	18-Feb-2020 15:45	19-Feb-2020 10:00	19-Feb-2020 10:05
Compound	CAS Number	LOR	Unit	EP2001971-046	EP2001971-047	EP2001971-048	EP2001971-049	EP2001971-050
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	5	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	5	<4
Phenanthrene	85-01-8	4	µg/kg	<4	<4	<4	48	11
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	7	<4
Fluoranthene	206-44-0	4	µg/kg	<4	<4	<4	97	18
Pyrene	129-00-0	4	µg/kg	<4	<4	<4	65	16
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	<4	30	9
Chrysene	218-01-9	4	µg/kg	<4	<4	<4	22	6
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	<4	31	11
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	<4	16	7
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	<4	18	7
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	<4	21	7
Perylene	198-55-0	4	µg/kg	<4	<4	<4	5	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	<4	10	5
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	8	<4
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	<4	<4	<4	396	104
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	<4	<4	30	10
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	5	5	32	12
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	10	10	34	14
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	93.8	63.8	61.4	80.8	76.7
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	71.4	72.7	70.3	88.4	81.0
Anthracene-d10	1719-06-8	10	%	73.6	76.4	87.4	82.7	71.9
4-Terphenyl-d14	1718-51-0	10	%	80.6	80.9	93.4	119	90.2

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH7-3	CH8-1	CH8-2	CH8-3	DUP-1
	Clie	ent sampli	ng date / time	19-Feb-2020 10:15	19-Feb-2020 09:20	19-Feb-2020 09:30	19-Feb-2020 09:35	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-051	EP2001971-052	EP2001971-053	EP2001971-054	EP2001971-055
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		0.1	%	41.3	38.3	37.6	38.3	42.9
EA150: Particle Sizing								
Clay (<4 µm)		1	%	16	14	14	13	
Silt (4-62 μm)		1	%	18	11	11	10	
Fine Sand (62-250 µm)		1	%	49	42	43	42	
Medium Sand (250-500 μm)		1	%	12	17	16	19	
Coarse Sand (500-2000 μm)		1	%	4	10	8	10	
Gravel (2000-10000 μm)		1	%	1	6	7	6	
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.51	2.44	2.47	2.45	
EG005(ED093)-SD: Total Metals in Se	ediments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1950	1230	1460	1780	2020
Iron	7439-89-6	50	mg/kg	4930	3120	3250	3830	4200
Vanadium	7440-62-2	2	mg/kg	13	9	10	10	9
EG020-SD: Total Metals in Sediments	s by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.55	3.86	3.87	3.96	4.30
Cadmium	7440-43-9	0.1	mg/kg	1.0	0.6	0.6	0.7	0.2
Copper	7440-50-8	1.0	mg/kg	154	98.3	99.2	107	218
Lead	7439-92-1	1.0	mg/kg	27.4	19.3	16.5	18.6	16.4
Manganese	7439-96-5	10	mg/kg	52	36	41	37	19
Nickel	7440-02-0	1.0	mg/kg	3.2	2.4	2.5	2.8	2.8
Silver	7440-22-4	0.1	mg/kg	0.3	0.2	0.2	0.4	0.2
Zinc	7440-66-6	1.0	mg/kg	302	173	187	199	180
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	4.1	3.1	3.5	3.6	4.4
EG035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.03	0.02	0.03	0.07
EP003: Total Organic Carbon (TOC) i								
Total Organic Carbon		0.02	%	0.71	0.72	0.58	0.60	0.97
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	1.2	2.4	1.0	1.0	15.8
-		0.0	Pacing					10.0
EP132B: Polynuclear Aromatic Hydro Naphthalene		5		6	9	6	8	8
2-Methylnaphthalene	91-20-3	5	µg/kg	<5	<5	<5	8 <5	o <5
2-methymaphthalefie	91-57-6	5	µg/kg	~ U	NU NU	NU	N 0	\$ 0

Page : 25 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH7-3	CH8-1	CH8-2	СН8-3	DUP-1
	Cli	ent sampli	ng date / time	19-Feb-2020 10:15	19-Feb-2020 09:20	19-Feb-2020 09:30	19-Feb-2020 09:35	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-051	EP2001971-052	EP2001971-053	EP2001971-054	EP2001971-055
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	5
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	22	14	12	10	27
Anthracene	120-12-7	4	µg/kg	4	<4	<4	<4	7
Fluoranthene	206-44-0	4	µg/kg	32	26	14	10	51
Pyrene	129-00-0	4	µg/kg	29	24	12	11	48
Benz(a)anthracene	56-55-3	4	µg/kg	12	13	6	4	24
Chrysene	218-01-9	4	µg/kg	10	11	5	<4	22
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	15	16	10	5	39
Benzo(k)fluoranthene	207-08-9	4	µg/kg	9	10	4	4	19
Benzo(e)pyrene	192-97-2	4	µg/kg	10	11	5	<4	23
Benzo(a)pyrene	50-32-8	4	µg/kg	10	11	4	<4	27
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<4	6
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	6	7	<4	<4	19
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<4	4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	5	<4	<4	13
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	165	157	78	52	342
Benzo(a)pyrene TEQ (zero)		4	µg/kg	14	16	6	<4	41
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	16	18	8	6	41
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	18	20	10	10	41
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	50.7	70.3	44.0	66.9	40.5
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	74.3	80.8	79.2	78.3	96.5
Anthracene-d10	1719-06-8	10	%	70.3	74.6	71.8	82.0	86.0
4-Terphenyl-d14	1718-51-0	10	%	79.5	90.8	86.7	90.6	121

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	DUP-2	DUP-3	DUP-4	DUP-5	TRIP-P1
	Cli	ient samplii	ng date / time	18-Feb-2020 00:00	19-Feb-2020 00:00	20-Feb-2020 00:00	20-Feb-2020 00:00	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-056	EP2001971-057	EP2001971-058	EP2001971-059	EP2001971-060
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		0.1	%	38.0	42.6	45.3	32.8	36.6
G005(ED093)-SD: Total Metals in S	ediments by ICP-AES	3						
Aluminium	7429-90-5	50	mg/kg	1730	2000	1770	250	1610
Iron	7439-89-6	50	mg/kg	4680	4780	5470	430	4140
Vanadium	7440-62-2	2	mg/kg	12	14	14	<2	12
G020-SD: Total Metals in Sediment	s by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.14	5.28	6.27	1.92	4.71
Cadmium	7440-43-9	0.1	mg/kg	1.0	0.9	1.5	<0.1	0.8
Copper	7440-50-8	1.0	mg/kg	141	153	209	<1.0	124
Lead	7439-92-1	1.0	mg/kg	30.4	26.4	48.1	1.0	24.4
Manganese	7439-96-5	10	mg/kg	59	55	48	17	46
Nickel	7440-02-0	1.0	mg/kg	3.4	3.6	3.3	<1.0	3.4
Silver	7440-22-4	0.1	mg/kg	0.4	0.3	0.6	<0.1	0.3
Zinc	7440-66-6	1.0	mg/kg	299	276	472	2.5	253
G020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.9	4.4	4.0	2.3	3.7
G035T: Total Recoverable Mercury	/ by FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.04	0.04	0.06	<0.01	0.04
P003: Total Organic Carbon (TOC)	in Soil							
Total Organic Carbon		0.02	%	0.72	0.99	1.17	0.23	0.71
P090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	2.3	2.4	3.2	<0.5	2.8
P132B: Polynuclear Aromatic Hydr	ocarbons							
Naphthalene	91-20-3	5	µg/kg	8	10	10	5	7
2-Methylnaphthalene	91-57-6	5	µg/kg	6	<5	6	<5	<5
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	12	15	22	<4	20
Anthracene	120-12-7	4	µg/kg	<4	<4	5	<4	<4
Fluoranthene	206-44-0	4	µg/kg	19	24	35	<4	23
Pyrene	129-00-0	4	µg/kg	22	24	32	<4	29
Benz(a)anthracene	56-55-3	4	µg/kg	11	13	16	<4	12
Chrysene	218-01-9	4	µg/kg	9	11	13	<4	9

Page : 27 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)	Client sample ID		DUP-2	DUP-3	DUP-4	DUP-5	TRIP-P1	
	Cli	ent sampli	ng date / time	18-Feb-2020 00:00	19-Feb-2020 00:00	20-Feb-2020 00:00	20-Feb-2020 00:00	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-056	EP2001971-057	EP2001971-058	EP2001971-059	EP2001971-060
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons - Continued							
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	15	26	23	<4	15
Benzo(k)fluoranthene	207-08-9	4	µg/kg	8	13	9	<4	7
Benzo(e)pyrene	192-97-2	4	µg/kg	11	18	14	<4	11
Benzo(a)pyrene	50-32-8	4	µg/kg	12	16	14	<4	10
Perylene	198-55-0	4	µg/kg	<4	5	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	7	13	10	<4	6
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	5	9	6	<4	<4
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
^ Sum of PAHs		4	µg/kg	145	197	215	5	149
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	16	22	20	<4	14
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	18	24	22	5	16
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	20	26	24	10	18
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	71.2	65.0	53.0	91.4	59.7
EP132T: Base/Neutral Extractable \$	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	91.1	89.9	88.1	89.3	86.2
Anthracene-d10	1719-06-8	10	%	80.7	80.8	78.0	90.2	79.0
4-Terphenyl-d14	1718-51-0	10	%	101	108	94.7	112	71.6

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TRIP-P2	TRIP-P3	 	
	Client sampling date / time		19-Feb-2020 00:00	20-Feb-2020 00:00	 		
Compound	CAS Number	LOR	Unit	EP2001971-061	EP2001971-062	 	
				Result	Result	 	
EA055: Moisture Content (Dried @ 10)5-110°C)						
Moisture Content		0.1	%	52.3	41.1	 	
EG005(ED093)-SD: Total Metals in Se	diments by ICP-AES	\$					
Aluminium	7429-90-5	50	mg/kg	2330	1310	 	
Iron	7439-89-6	50	mg/kg	6220	4370	 	
Vanadium	7440-62-2	2	mg/kg	17	13	 	
EG020-SD: Total Metals in Sediments	by ICPMS						
Arsenic	7440-38-2	1.00	mg/kg	7.20	5.55	 	
Cadmium	7440-43-9	0.1	mg/kg	1.0	1.3	 	
Copper	7440-50-8	1.0	mg/kg	186	166	 	
Lead	7439-92-1	1.0	mg/kg	35.4	44.4	 	
Manganese	7439-96-5	10	mg/kg	54	49	 	
Nickel	7440-02-0	1.0	mg/kg	4.4	2.8	 	
Silver	7440-22-4	0.1	mg/kg	0.5	0.4	 	
Zinc	7440-66-6	1.0	mg/kg	332	392	 	
EG020T: Total Metals by ICP-MS							
Lithium	7439-93-2	0.1	mg/kg	5.2	3.4	 	
EG035T: Total Recoverable Mercury	by FIMS						
Mercury	7439-97-6	0.01	mg/kg	0.07	0.05	 	
EP003: Total Organic Carbon (TOC) i	n Soil						
Total Organic Carbon		0.02	%	1.63	0.83	 	
EP090: Organotin Compounds							
Tributyltin	56573-85-4	0.5	µgSn/kg	1.3	4.6	 	
EP132B: Polynuclear Aromatic Hydro	ocarbons						
Naphthalene	91-20-3	5	µg/kg	15	7	 	
2-Methylnaphthalene	91-57-6	5	µg/kg	6	<5	 	
Acenaphthylene	208-96-8	4	µg/kg	<5	<4	 	
Acenaphthene	83-32-9	4	µg/kg	<5	<4	 	
Fluorene	86-73-7	4	µg/kg	<5	<4	 	
Phenanthrene	85-01-8	4	µg/kg	14	11	 	
Anthracene	120-12-7	4	µg/kg	<5	<4	 	
Fluoranthene	206-44-0	4	µg/kg	29	<20	 	
Pyrene	129-00-0	4	µg/kg	28	14	 	
Benz(a)anthracene	56-55-3	4	µg/kg	16	7	 	
Chrysene	218-01-9	4	µg/kg	11	5	 	

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TRIP-P2	TRIP-P3	 	
(Cli	ient samplii	ng date / time	19-Feb-2020 00:00	20-Feb-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EP2001971-061	EP2001971-062	 	
				Result	Result	 	
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	22	10	 	
Benzo(k)fluoranthene	207-08-9	4	µg/kg	11	4	 	
Benzo(e)pyrene	192-97-2	4	µg/kg	15	6	 	
Benzo(a)pyrene	50-32-8	4	µg/kg	14	6	 	
Perylene	198-55-0	4	µg/kg	<5	<4	 	
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	10	4	 	
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<5	<4	 	
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	7	<4	 	
Coronene	191-07-1	5	µg/kg	<5	<5	 	
^ Sum of PAHs		4	µg/kg	198	74	 	
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	20	8	 	
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	22	10	 	
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	24	12	 	
EP090S: Organotin Surrogate							
Tripropyltin		0.5	%	62.7	95.7	 	
EP132T: Base/Neutral Extractable \$	Surrogates						
2-Fluorobiphenyl	321-60-8	10	%	87.1	72.4	 	
Anthracene-d10	1719-06-8	10	%	75.6	74.2	 	
4-Terphenyl-d14	1718-51-0	10	%	92.1	89.3	 	

Sub-Matrix: SEDIMENT (Matrix: SOIL)	Client sample ID			Elutriate Water	 	
	ient sampliı	ng date / time	20-Feb-2020 09:30	 	 	
Compound	CAS Number	S Number LOR Unit		EP2001971-064	 	
				Result	 	
EN68: Seawater Elutriate Testing Proce	edure					
Seawater Sampling Date		-	-	27/02/2020	 	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RINSB	 	
	C	Client sampling date / time			 	
Compound	CAS Number	LOR	Unit	EP2001971-063	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Silver	7440-22-4	0.001	mg/L	<0.001	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG035T: Total Recoverable Merci	ury by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
^ Sum of polycyclic aromatic hydroca	arbons	0.5	μg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	
EP075(SIM)S: Phenolic Compound	d Surrogates					
Phenol-d6	13127-88-3	1.0	%	23.9	 	

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			RINSB	 	
	Cli	ent sampli	ng date / time	19-Feb-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EP2001971-063	 	
				Result	 	
EP075(SIM)S: Phenolic Compound Sur	rogates - Continued					
2-Chlorophenol-D4	93951-73-6	1.0	%	60.6	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	69.6	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	70.6	 	
Anthracene-d10	1719-06-8	1.0	%	93.9	 	
4-Terphenyl-d14	1718-51-0	1.0	%	86.4	 	

Surrogate Control Limits

Sub-Matrix: ELUTRIATE	Г	Recovery	l imits (%)
	CAS Number	Low	High
EP090S: Organotin Surrogate	CAS Number		5
Tripropyltin		24	116
Sub-Matrix: MARINE SEDIMENT	Γ	Recovery	Limits (%)
Compound	CAS Number	Low	High
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP132T: Base/Neutral Extractable Surrogates			
2-Fluorobiphenyl	321-60-8	70	130
Anthracene-d10	1719-06-8	70	130
4-Terphenyl-d14	1718-51-0	70	130
Sub-Matrix: WATER	Γ	Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	67
2-Chlorophenol-D4	93951-73-6	29	120
2.4.6-Tribromophenol	118-79-6	10	131
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	34	131
Anthracene-d10	1719-06-8	43	126
4-Terphenyl-d14	1718-51-0	41	142

21-05631 01 20 May 2021

LABORATORY REPORT

ADDRESS:	O2 Marine

Suite 2, 4B Mews Rd Fremantle WA 6160

ARL

ATTENTION: Russell Stevens

DATE RECEIVED: 25/04/2021

YOUR REFERENCE: 18WAU-0004 Geraldton Port Baseline Sediment Characterisation Sampling 2021

PURCHASE ORDER:

APPROVALS:

SSangster Marte Sean Sangster DouglasTodd Andrew Harvey Inorganics Supervisor Laboratory Manager Resources Manager

REPORT COMMENTS:

This report is issued by Eurofins ARL Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Samples are analysed on an as received basis unless otherwise noted.

Tributyl tin in Soil analysis subcontracted to MPL, NATA Accred No. 2901, Report Number 259526 Nitrate, Nitrite, ammonia and FRP tests were conducted on a porewater sample.

METHOD REFERENCES:

Methods prefixed with "ARL" are covered under NATA Accreditation Number: 2377 Methods prefixed with "PM" and "EDP" are covered under NATA Accreditation Number: 2561

Method ID	Method Description
ARL No. 401/403	Metals in Soil and Sediment by ICPOES/MS
ARL No. 030	Metals in Soil and Sediment by AAS
ARL No. 406	Mercury by Cold Vapour Atomic Absorption Spectrophotometry
ARL No. 135	Moisture
ARL No. 330	Persulfate Method for Simultaneous Determination of TN & TP
ARL No. 118	Total Phosphorus and TKN in Soil and Biosolids
ARL No. 314	NOx in Soil and Sediment by Discrete Analyser
ARL No. 064	Total Organic Carbon in Sediment
ARL No. 311	Nitrite in Water by Discrete Analyser
ARL No. 313/319	NOx in Water by Discrete Analyser
ARL No. 303	Ammonia in Water by Discrete Analyser
ARL No. 309	Filterable Reactive Phosphorus in Water by Discrete Analyser
Subcontracting	See Report Comments section for more information.

21-05631 01 20 May 2021

LABORATORY REPORT

ARL

Metals in Soil and Sediment		Sample No	21-05631-1	21-05631-2	21-05631-3	21-05631-4	21-05631-5
	Sample Description		NC17-1	NC17-2	NC17-3	NC18	NC19
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	420	420	410	250	320
Arsenic	0.1	mg/kg	2.8	3.1	6.0	1.4	1.5
Cadmium	0.1	mg/kg	0.1	0.1	0.2	<0.1	<0.1
Chromium	0.2	mg/kg	11	13	24	13	13
Copper	1	mg/kg	12	12	14	10	11
Lead	1	mg/kg	1	2	1	<1	<1
Manganese	1	mg/kg	25	26	27	17	15
Nickel	1	mg/kg	<1	<1	<1	<1	<1
Zinc	1	mg/kg	15	14	16	5	8
Silver	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Iron	1	mg/kg	1,100	1,100	1,200	650	720
Vanadium	2	mg/kg	3	3	4	2	2
Mercury	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01

Metals in Soil and Sediment		Sample No	21-05631-6	21-05631-7	21-05631-8	21-05631-9	21-05631-10
	Sam	ple Description	CH16	CH17	CH18	CH19	CH1-1
		Sample Date	24/03/2021	23/03/2021	23/03/2021	23/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	2,700	1,600	2,300	2,000	
Arsenic	0.1	mg/kg	6.9	4.1	6.2	5.9	
Cadmium	0.1	mg/kg	0.8	0.4	0.7	0.6	
Chromium	0.2	mg/kg	25	19	23	20	
Copper	1	mg/kg	250	120	170	150	
Lead	1	mg/kg	33	17	22	19	
Manganese	1	mg/kg	54	34	43	38	
Nickel	1	mg/kg	5	3	4	3	
Zinc	1	mg/kg	370	170	260	240	
Silver	0.1	mg/kg	0.3	0.1	0.2	0.2	
Iron	1	mg/kg	11,000	5,700	8,200	7,200	
Vanadium	2	mg/kg	21	12	16	14	
Mercury	0.01	mg/kg	0.06	0.03	0.04	0.05	
Phosphorus	1	mg/kg					710

Metals in Soil and Sediment Sample No		21-05631-11	21-05631-12	21-05631-13	21-05631-14	21-05631-15	
Sample Description			CH2-1	CH3-1	CH3-2	CH3-3	CH4-1
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Phosphorus	1	mg/kg	610	490	480	500	450

Metals in Soil and Sediment Sample No		21-05631-16	21-05631-17	21-05631-18	21-05631-19	21-05631-20	
Sample Description			CH5-1	CH6-1	CH7-1	CH8-1	SPLIT-P4
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Phosphorus	1	mg/kg	400	380	370	380	390

21-05631 01 20 May 2021

LABORATORY REPORT

ARL

Soil Parameters	Soil Parameters Sample No		21-05631-1	21-05631-2	21-05631-3	21-05631-4	21-05631-5
	Sam	ole Description	NC17-1	NC17-2	NC17-3	NC18	NC19
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	43.9	43.5	44.3	36.6	39.8
		O	04.05004.0	04 05004 7	04 05004 0	04 05004 0	04 05004 40
Soil Parameters	0	Sample No	21-05631-6	21-05631-7	21-05631-8	21-05631-9	21-05631-10
	Sample Description		CH16	CH17	CH18	CH19	CH1-1
		Sample Date	24/03/2021	23/03/2021	23/03/2021	23/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	53.6	46.6	55.4	54.6	53.0
Soil Parameters Sample No			21-05631-11	21-05631-12	21-05631-13	21-05631-14	21-05631-15
	Sam	ole Description	CH2-1	CH3-1	CH3-2	CH3-3	CH4-1
	•	Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	53.0	47.0	52.2	49.1	40.6
Soil Parameters Sample No		21-05631-16	21-05631-17	21-05631-18	21-05631-19	21-05631-20	
Sample Description		CH5-1	CH6-1	CH7-1	CH8-1	SPLIT-P4	
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Moisture	0.1	%w/w	34.9	35.8	43.7	38.6	38.8
		O a marcha Nia	04 05004 40	04 05004 44	04 05004 40	04 05004 40	04 05004 44
Nutrients in Soil		Sample No	21-05631-10	21-05631-11	21-05631-12	21-05631-13	21-05631-14
	Sam	ole Description	CH1-1	CH2-1	CH3-1	CH3-2	CH3-3
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
	LOR	Units	Result	Result	Result	Result	Result
Total Nitrogen	10	mg/kg	2,300	2,300	1,400	2,100	2,000
Total Kjeldahl Nitrogen	10	mg/kg	2,300	2,300	1,400	2,100	2,000
NOx-N	1	mg/kg	<1	<1	<1	<1	<1
Nutrients in Soil		Sample No	21-05631-15	21-05631-16	21-05631-17	21-05631-18	21-05631-19
	Sam	ole Description	CH4-1	CH5-1	CH6-1	CH7-1	CH8-1
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Total Nitrogen	10	mg/kg	1,300	910	870	1,400	1,200
Total Kjeldahl Nitrogen	10	mg/kg	1,300	910	870	1,400	1,200
NOx-N	1	mg/kg	<1	<1	<1	<1	<1

Nutrients in Soil	Sample No	21-05631-20	
	ple Description	SPLIT-P4	
		Sample Date	24/03/2021
ANALYTE	LOR	Units	Result
Total Nitrogen	10	mg/kg	2,000
Total Kjeldahl Nitrogen	10	mg/kg	2,000
NOx-N	1	mg/kg	<1

21-05631 01 20 May 2021

LABORATORY REPORT

ARL

Misc. Inorganics in Soil		Sample No	21-05631-6	21-05631-7	21-05631-8	21-05631-9	
	Sam	ole Description	CH16	CH17	CH18	CH19	
		Sample Date	24/03/2021	23/03/2021	23/03/2021	23/03/2021	
ANALYTE	LOR	Units	Result	Result	Result	Result	
TOC	0.1	%	2.8	1.5	2.4	2.4	1
				1			
lons by Discrete Analyser		Sample No	21-05631-10	21-05631-11	21-05631-12	21-05631-13	21-05631-1
	Sam	ole Description	CH1-1	CH2-1	CH3-1	CH3-2	CH3-3
		Sample Date	24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Nitrite-N	0.01	mg/L	<0.01	0.44	<0.01	0.02	0.07
Nitrate-N	0.01	mg/L	<0.01	0.35	<0.01	0.34	0.05
Ammonia-N	0.02	mg/L	29	0.79	11	0.09	13
Filterable Reactive Phosphorus	0.01	mg/L	0.94	0.04	0.15	0.01	0.30

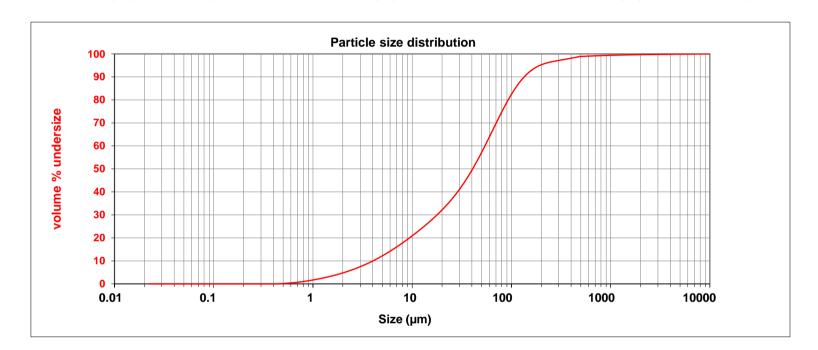
Ions by Discrete Analyser	Sample No		21-05631-15	21-05631-16	21-05631-17	21-05631-18	21-05631-19
	Sam	ple Description	CH4-1	CH5-1	CH6-1	CH7-1	CH8-1
Sample Date			24/03/2021	24/03/2021	24/03/2021	24/03/2021	24/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Nitrite-N	0.01	mg/L	<0.01	<0.01	0.04	0.01	0.04
Nitrate-N	0.01	mg/L	<0.01	0.04	0.05	0.34	0.16
Ammonia-N	0.02	mg/L	7.5	7.9	3.9	0.06	1.2
Filterable Reactive Phosphorus	0.01	mg/L	0.11	0.15	0.06	0.03	0.24

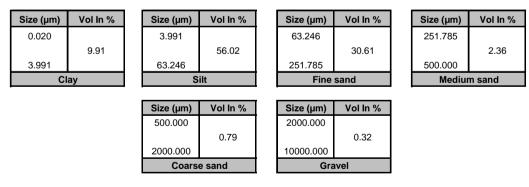
Ions by Discrete Analyser	ons by Discrete Analyser Sample No				
	Samp	SPLIT-P4			
		Sample Date	24/03/2021		
ANALYTE	LOR	Units	Result		
Nitrite-N	0.01	mg/L	0.05		
Nitrate-N	0.01	mg/L	0.08		
Ammonia-N	0.02	mg/L	5.0		
Filterable Reactive Phosphorus	0.01	mg/L	0.08		

Subcontracting		Sample No	21-05631-6	21-05631-7	21-05631-8	21-05631-9
Sample Description			CH16	CH17	CH18	CH19
		Sample Date	24/03/2021	23/03/2021	23/03/2021	23/03/2021
ANALYTE	LOR	Units	Result	Result	Result	Result
Tributyl tin	0.5	µg Sn/kg	2.0	2.0	1.0	1.0

Result Definitions

LOR Limit of Reporting [NT] Not Tested


* Denotes test not covered by NATA Accreditation


[ND] Not Detected at indicated Limit of Reporting

FOR MICROBIOLOGICAL TESTING - The data in this report may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

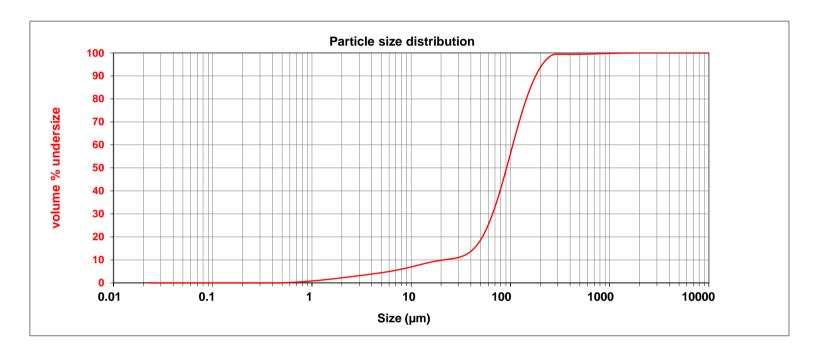
|--|--|

	d(0.1)	4.03 µm	d(0.5)	40.72 µm	d(0.9)	135.11 µm
Sonication:		20 min sonication				
Additives:		10 millilitres sodium hexameta	phosphate			
Dispersant:		Water			Analysis model:	General purpose
Analysis:		Laser diffraction size distribution	on following ISO13320-1:20	20	Result units:	Volume
Comment:		None				
Revision No. :		0				
Lab ID:		21_0521_12				
Job ID:		21_0521				
Client ID:		21-05631-9 CH19			Date reported:	14/4/2021
Client address	5:	46 - 48 Banksia Road WELSH	POOL WA 6106		Date analysed	14/4/2021
Client:		Eurofins ARL Pty Ltd			Date received:	29/3/2021

Note 1: Data from $500\mu m$ to $10000\mu m$ by wet screening, from $0.02\mu m$ to $500\mu m$ by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 James Nicolas, B.A.


 Reported:
 James Nicolas, B.A.

 Approved:
 Ian Davies, B.Sc.(Chemistry)

 Be Confident We See More

|--|--|

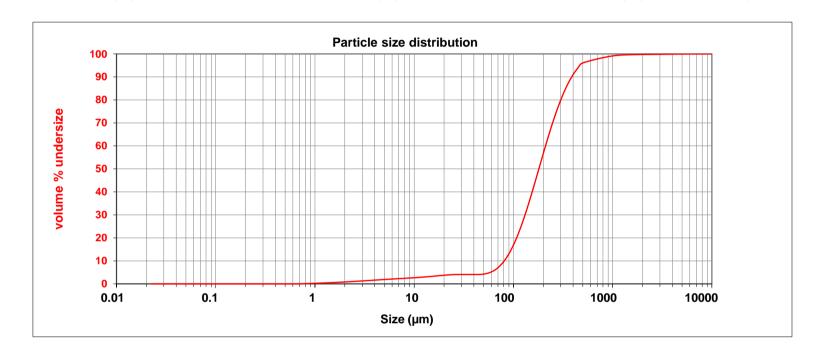
Client: Client address: Client ID:		Eurofins ARL Pty Ltd 46 - 48 Banksia Road WELSH 21-05631-1 NC17-1	IPOOL WA 6106		Date received: Date analysed Date reported:	29/3/2021 14/4/2021 14/4/2021
Job ID:		21_0521				
Lab ID:		21_0521_06				
Revision No. :		0				
Comment:		None				
Analysis:		Laser diffraction size distributi	on following ISO13320-1:20	20	Result units:	Volume
Dispersant:		Water			Analysis model:	General purpose
Additives:		10 millilitres sodium hexameta	aphosphate			
Sonication:		20 min sonication				
d	d(0.1)	21.43 µm	d(0.5)	91.59 µm	d(0.9)	179.97 µm

Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991			63.246		251.785	
	3.82		23.96			70.80		0.83
3.991		63.246			251.785		500.000	
Cla	ay	S	ilt		Fine	sand	Mediur	n sand
				-				
		Size (µm)	Vol In %		Size (µm)	Vol In %		
		500.000			2000.000			
			0.59			0.00		
		2000.000			10000.000			
		Coars	e sand		Gra	vel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 James Nicolas, B.A.


 Reported:
 James Nicolas, B.A.

 Approved:
 Ian Davies, B.Sc.(Chemistry)

 Be Confident We See More

|--|--|

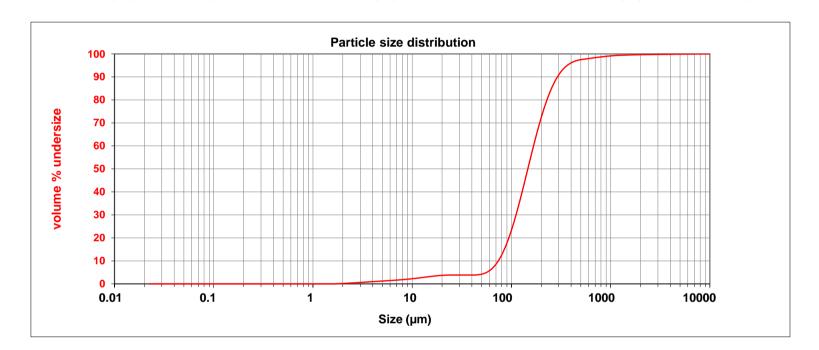
	d(0.1)	80.82 µm	d(0.5)	180.69 µm	d(0.9)	388.14 µm
Sonication:		20 min sonication				
Additives:		10 millilitres sodium hexameta	phosphate			
Dispersant:		Water			Analysis model:	General purpose
Analysis:	ysis: Laser diffraction size distribution following ISO13320-1:2020		020	Result units:	Volume	
Comment:		None				
Revision No. :		0				
Lab ID:		21_0521_07				
Job ID:		21_0521				
Client ID:		21-05631-4 NC18			Date reported:	14/4/2021
Client address	s:	46 - 48 Banksia Road WELSH	POOL WA 6106		Date analysed	14/4/2021
Client:		Eurofins ARL Pty Ltd			Date received:	29/3/2021

Size (µm)	Vol In %	Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %
0.020		3.991		63.246			251.785	
	1.61		4.08		65.09			25.28
3.991		63.246		251.785			500.000	
Cl	ay	S	ilt	Fine	sand		Mediur	n sand
		-				_	-	
		Size (µm)	Vol In %	Size (µm)	Vol In %			
		500.000		2000.000				
			3.68		0.26			
		2000.000		10000.000				
		Coars	e sand	Gra	vel			

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 James Nicolas, B.A.


 Reported:
 James Nicolas, B.A.

 Approved:
 Ian Davies, B.Sc.(Chemistry)

 Be Confident We See More

|--|--|

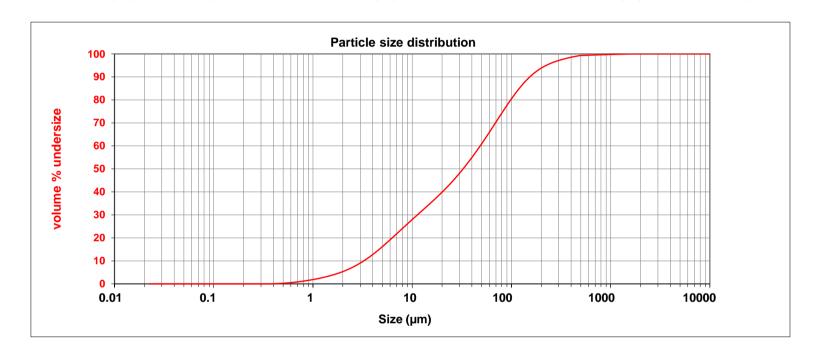
Client: Client address: Client ID: Job ID:	Eurofins ARL Pty Ltd 46 - 48 Banksia Road WELSHPO 21-05631-5 NC19 21 0521	DL WA 6106	Date received: Date analysed Date reported:	29/3/2021 14/4/2021 14/4/2021
Lab ID:	21_0521_08			
Revision No. :	0			
Comment:	None			
Analysis:	Laser diffraction size distribution f	llowing ISO13320-1:2020	Result units:	Volume
Dispersant:	Water		Analysis model:	General purpose
Additives:	10 millilitres sodium hexametapho	sphate		
Sonication:	20 min sonication			
d().1) 73.59 µm	d(0.5) 146	.61 μm d(0.9)	292.27 μm

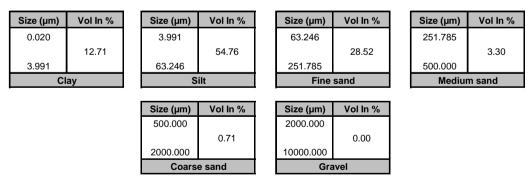
Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %		Size (µm)	Vol In %	
0.020		3.991			63.246			251.785		
	0.96		5.53			78.21			12.80	
3.991		63.246			251.785			500.000		
Cl	ay	S	Silt		Fine sand			Medium sand		
		-						-		
		Size (µm)	Vol In %		Size (µm)	Vol In %				
		500.000			2000.000					
			2.16			0.34				
		2000.000			10000.000					
		Coars	e sand		Gra	vel				

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 James Nicolas, B.A.


 Reported:
 James Nicolas, B.A.


 Approved:
 Ian Davies, B.Sc.(Chemistry)

 Be Confident We See More

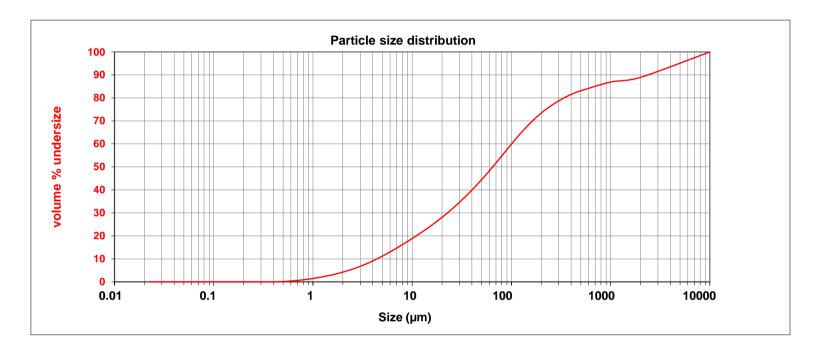
|--|--|

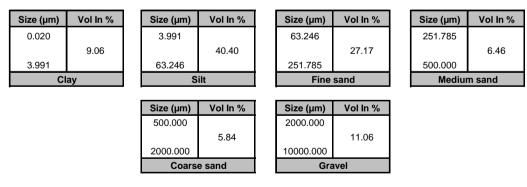
Sonication:		20 min sonication				
Additives:		10 millilitres sodium hexameta	aphosphate			
Dispersant:		Water			Analysis model:	General purpose
Analysis:	alysis: Laser diffraction size distribution following ISO13320-1:2020		020	Result units:	Volume	
Comment:		None				
Revision No. :		0				
Lab ID:		21_0521_09				
Job ID:		21_0521				
Client ID:		21-05631-6 CH16			Date reported:	14/4/2021
Client address	:	46 - 48 Banksia Road WELSH	HPOOL WA 6106		Date analysed	14/4/2021
Client:		Eurofins ARL Pty Ltd			Date received:	29/3/2021

Note 1: Data from $500\mu m$ to $10000\mu m$ by wet screening, from $0.02\mu m$ to $500\mu m$ by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 James Nicolas, B.A.

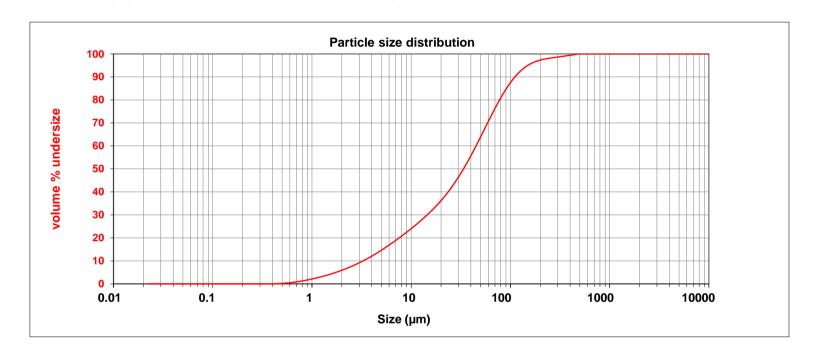

 Reported:
 James Nicolas, B.A.

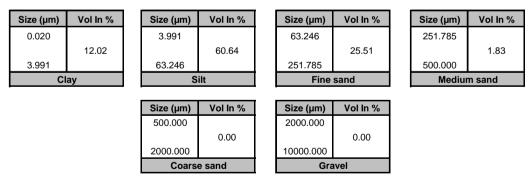

 Approved:
 Ian Davies, B.Sc.(Chemistry)

 Be Confident We See More

|--|--|

	d(0.1)	4.43 µm	d(0.5)	64.84 µm	d(0.9)	2769.84 µm
Sonication:		20 min sonication				
Additives:		10 millilitres sodium hexameta	phosphate			
Dispersant:		Water			Analysis model:	General purpose
Analysis:		Laser diffraction size distribution	on following ISO13320-1:20	20	Result units:	Volume
Comment:		None				
Revision No. :		0				
Lab ID:		21_0521_10				
Job ID:		21_0521				
Client ID:		21-05631-7 CH17			Date reported:	14/4/2021
Client address	8:	46 - 48 Banksia Road WELSH	POOL WA 6106		Date analysed	14/4/2021
Client:		Eurofins ARL Pty Ltd			Date received:	29/3/2021


Note 1: Data from $500\mu m$ to $10000\mu m$ by wet screening, from $0.02\mu m$ to $500\mu m$ by laser diffraction.


Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

Analysed:James Nicolas, B.A.Reported:James Nicolas, B.A.Approved:Ian Davies, B.Sc.(Chemistry)Be Confident We See More

|--|--|

Client: Client address:		Eurofins ARL Pty Ltd 46 - 48 Banksia Road WELSH	IPOOL WA 6106		Date received: Date analysed	29/3/2021 14/4/2021
Client ID:		21-05631-8 CH18			Date reported:	14/4/2021
Job ID:		21_0521			•	
Lab ID:		21_0521_11				
Revision No. :		0				
Comment:		None				
Analysis:		Laser diffraction size distribution	on following ISO13320-1:20	20	Result units:	Volume
Dispersant:		Water			Analysis model:	General purpose
Additives:		10 millilitres sodium hexameta	phosphate			
Sonication:		20 min sonication				
	d(0.1)	3.28 µm	d(0.5)	33.70 µm	d(0.9)	111.21 μm

Note 1: Data from $500\mu m$ to $10000\mu m$ by wet screening, from $0.02\mu m$ to $500\mu m$ by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 James Nicolas, B.A.

 Reported:
 James Nicolas, B.A.

 Approved:
 Ian Davies, B.Sc.(Chemistry)

 Be Confident We See More

21-08919 00 2 June 2021

LABORATORY REPORT

ADDRESS:	O2 Marine
ADDINE00.	

Suite 2, 4B Mews Rd Fremantle WA 6160

ARL

ATTENTION: Russell Stevens

DATE RECEIVED: 14/05/2021

YOUR REFERENCE: 18WAU-0004 Geraldton Port Baseline Sediment Characterisation Sampling 20

PURCHASE ORDER:

APPROVALS:

DouglasTodd Laboratory Manager

REPORT COMMENTS:

This report is issued by Eurofins ARL Pty Ltd. The report shall not be reproduced except in full without written approval from the laboratory.

Samples are analysed on an as received basis unless otherwise noted.

All analysis was conducted on a dry weight basis. Tributyl tin in Soil analysis subcontracted to MPL, NATA Accred No. 2901, Report Number 261972

METHOD REFERENCES:

Methods prefixed with "ARL" are covered under NATA Accreditation Number: 2377 Methods prefixed with "PM" and "EDP" are covered under NATA Accreditation Number: 2561

Method ID	Method Description
ARL No. 401/403	Metals in Soil and Sediment by ICPOES/MS
ARL No. 030	Metals in Soil and Sediment by AAS
ARL No. 406	Mercury by Cold Vapour Atomic Absorption Spectrophotometry
ARL No. 064	Total Organic Carbon in Sediment
Subcontracting	See Report Comments section for more information.

21-08919 00 2 June 2021

LABORATORY REPORT

ARL

Metals in Soil and Sediment		Sample No	21-08919-1	21-08919-2	21-08919-3	21-08919-4	21-08919-5
	Sam	ole Description	NPA1-A	NPA1-B	NPA1-C	NPA2	NPA3
		Sample Date	12/05/2021 2:55:00	12/05/2021 2:55:00	12/05/2021 2:55:00	12/05/2021 2:40:00	12/05/2021 2:20:00
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Aluminium	1	mg/kg	480	490	510	440	400
Arsenic	0.1	mg/kg	2.0	2.3	2.3	2.4	2.3
Cadmium	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	0.2	mg/kg	12	12	12	11	10
Copper	1	mg/kg	6	6	6	7	5
Lead	1	mg/kg	1	1	1	1	1
Manganese	1	mg/kg	25	26	29	24	25
Nickel	1	mg/kg	<1	<1	<1	<1	<1
Zinc	1	mg/kg	3	3	2	2	2
Silver	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Iron	1	mg/kg	600	600	690	520	510
Vanadium	2	mg/kg	3	3	3	2	3
Mercury	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01

Metals in Soil and Sediment	Sample No	21-08919-6	21-08919-7	21-08919-8	
	Sam	ple Description	NPA4	NPA5	DUP1
	Sample Date	12/05/2021 3:05:00	12/05/2021 3:15:00	12/05/2021	
ANALYTE	LOR	Units	Result	Result	Result
Aluminium	1	mg/kg	360	460	400
Arsenic	0.1	mg/kg	2.2	2.3	2.4
Cadmium	0.1	mg/kg	<0.1	<0.1	<0.1
Chromium	0.2	mg/kg	9.0	11	11
Copper	1	mg/kg	5	6	6
Lead	1	mg/kg	1	1	1
Manganese	1	mg/kg	25	29	32
Nickel	1	mg/kg	<1	<1	<1
Zinc	1	mg/kg	2	2	2
Silver	0.1	mg/kg	<0.1	<0.1	<0.1
Iron	1	mg/kg	480	610	520
Vanadium	2	mg/kg	3	3	3
Mercury	0.01	mg/kg	<0.01	<0.01	<0.01

Misc. Inorganics in Soil Sample No			21-08919-1	21-08919-2	21-08919-3	21-08919-4	21-08919-5
	ole Description	NPA1-A	NPA1-B	NPA1-C	NPA2	NPA3	
Sample Date			12/05/2021 2:55:00	12/05/2021 2:55:00	12/05/2021 2:55:00	12/05/2021 2:40:00	12/05/2021 2:20:00
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
TOC	0.1	%	0.2	0.2	0.2	0.2	0.2
Misc. Inorganics in Soil		Sample No	21-08919-6	21-08919-7	21-08919-8		
wise. morganics in 30i		•		21-00919-7	21-00919-0		
	Sam	ole Description	NPA4	NPA5	DUP1		
	Sample Date	12/05/2021 3:05:00	12/05/2021 3:15:00	12/05/2021			
ANALYTE	LOR	Units	Result	Result	Result		
TOC	0.1	%	0.2	0.2	0.2		

Job Number: Revision: Date:

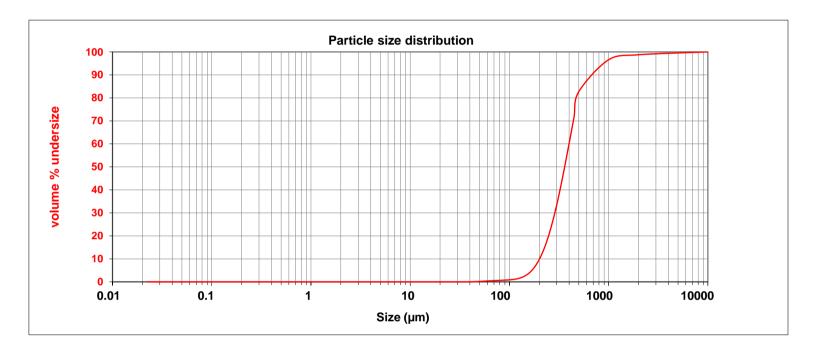
21-08919 00 2 June 2021

LABORATORY REPORT

ARL

Subcontracting	ubcontracting Sample No				21-08919-3	21-08919-4	21-08919-5
	Sam	ple Description NPA1-A NPA	NPA1-B	NPA1-C	NPA2	NPA3	
Sample Date		e 12/05/2021 2:55:00	12/05/2021 2:55:00	12/05/2021 2:55:00	12/05/2021 2:40:00	12/05/2021 2:20:00	
ANALYTE	LOR	Units	Result	Result	Result	Result	Result
Tributyl tin	0.5	µg Sn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Subcontracting		Sample No	21-08919-6	21-08919-7	21-08919-8		
	Sam	ple Description	NPA4	NPA5	DUP1		
Sample Date			12/05/2021 3:05:00	12/05/2021 3:15:00	12/05/2021		
ANALYTE	LOR	Units	Result	Result	Result		
Tributyl tin	0.5	µg Sn/kg	<0.5	<0.5	<0.5		

Result Definitions


LOR Limit of Reporting [NT] Not Teste * Denotes test not covered by NATA Accreditation [NT] Not Tested

[ND] Not Detected at indicated Limit of Reporting

FOR MICROBIOLOGICAL TESTING - The data in this report may not be representative of a lot, batch or other samples and may not necessarily justify the acceptance or rejection of a lot or batch, a product recall or support legal proceedings. Tests are not routinely performed as duplicates unless specifically requested. Changes occur in the bacterial content of biological samples. Samples should be examined as soon as possible after collection, preferably within 6 hrs and must be stored at 4 degrees Celsius or below. Samples tested after 24 hrs cannot be regarded as satisfactory because of temperature abuse and variations.

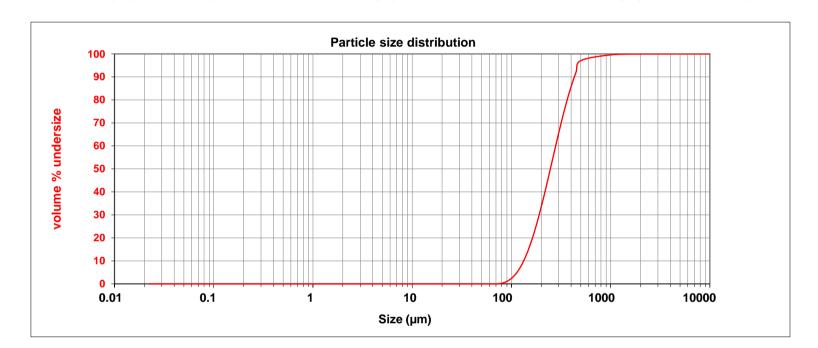
Client:	Eurofins ARL Pty Ltd			Date received:	17/05/2021
Client address:	46 - 48 Banksia Road WELSHF	POOL WA 6106		Date analysed	31/05/2021
Client ID:	21-08919-7 NPA5			Date reported:	31/05/2021
Job ID:	21_0804				
Lab ID:	21_0804_07				
Revision No. :	0				
Comment:	None				
Analysis:	Laser diffraction size distribution	n following ISO13320-1:2	2020	Result units:	Volume
Dispersant:	Water			Analysis model:	General purpose
Additives:	10 millilitres sodium hexametap	hosphate			
Sonication:	18 min sonication				
d(0	. 1) 201.31 μm	d(0.5)	360.59 µm	d(0.9)	762.94 µm

Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991			63.246		251.785	
	0.00		0.42			20.49		61.79
3.991		63.246			251.785		500.000	
Cl	ay	S	ilt		Fine	sand	Mediur	n sand
-		-		_				
		Size (µm)	Vol In %		Size (µm)	Vol In %		
		500.000			2000.000			
			16.06			1.24		
		2000.000			10000.000			
		Coars	e sand		Gra	vel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 Beau Duval-Jenner


 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

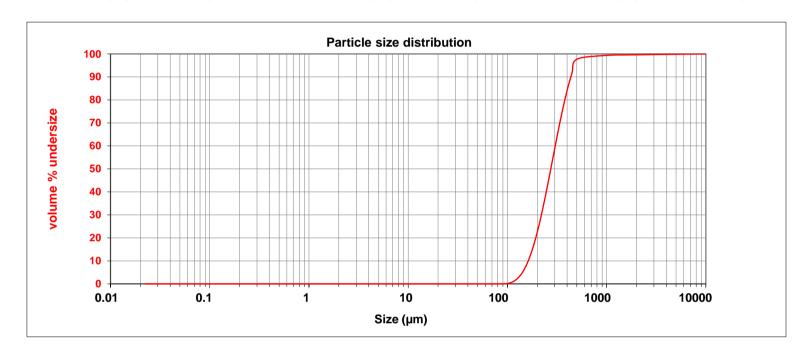
Client:	Eurofins ARL Pty Ltd			Date received:	17/05/2021
Client address:	46 - 48 Banksia Road WELSH	POOL WA 6106		Date analysed	31/05/2021
Client ID:	21-08919-1 NPA1-A			Date reported:	31/05/2021
Job ID:	21_0804				
Lab ID:	21_0804_01				
Revision No. :	0				
Comment:	None				
Analysis:	Laser diffraction size distribution	on following ISO13320-1:2	2020	Result units:	Volume
Dispersant:	Water			Analysis model:	General purpose
Additives:	10 millilitres sodium hexameta	phosphate			
Sonication:	17 min sonication				
d().1) 132.66 μm	d(0.5)	247.14 µm	d(0.9)	432.37 µm

Size (µm)	Vol In %						
0.020		3.991		63.246		251.785	
	0.00		0.00		51.57		45.51
3.991		63.246		251.785		500.000	
Cla	ıy	Si	ilt	Fine	sand	Mediur	n sand
-							
		Size (µm)	Vol In %	Size (µm)	Vol In %		
		500.000		2000.000			
			2.86		0.06		
		2000.000		10000.000			
		Coarse	e sand	Gra	ivel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 Beau Duval-Jenner


 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

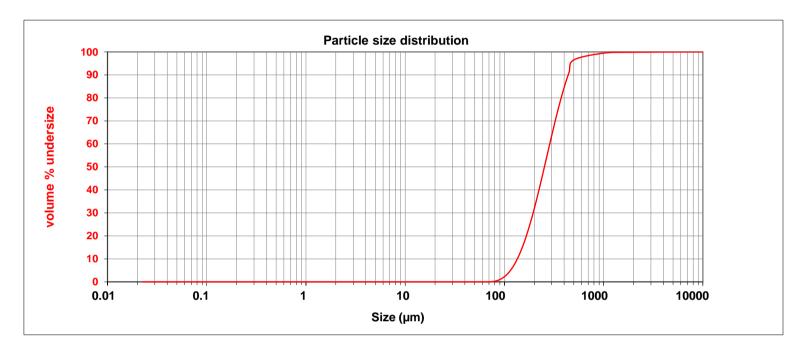
microanalysis australia

Client:	Eurofins ARL Pty Ltd			Date received:	17/05/2021
Client address:	46 - 48 Banksia Road WELSH	POOL WA 6106		Date analysed	31/05/2021
Client ID:	21-08919-2 NPA1-B			Date reported:	31/05/2021
Job ID:	21_0804				
Lab ID:	21_0804_02				
Revision No. :	0				
Comment:	None				
Analysis:	Laser diffraction size distribution	on following ISO13320-1:2	2020	Result units:	Volume
Dispersant:	Water			Analysis model:	General purpose
Additives:	10 millilitres sodium hexameta	phosphate			
Sonication:	19 min sonication				
d(0	. 1) 161.95 μm	d(0.5)	273.90 µm	d(0.9)	437.12 µm

Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991			63.246		251.785	
	0.00		0.00			42.03		55.62
3.991		63.246			251.785		500.000	
Cla	ay	S	ilt		Fine	sand	Mediur	n sand
-				-			-	
		Size (µm)	Vol In %		Size (µm)	Vol In %		
		500.000			2000.000			
			1.96			0.38		
		2000.000			10000.000			
		Coars	e sand		Gra	vel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.


 Analysed:
 Beau Duval-Jenner

 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

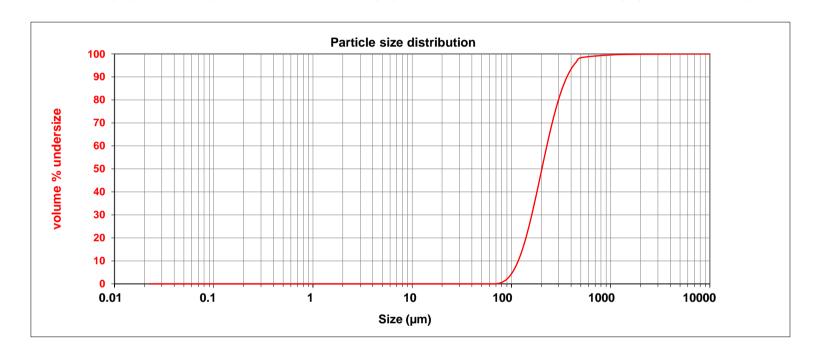
Client:		Eurofins ARL Pty Ltd			Date received:	17/05/2021
Client address:		46 - 48 Banksia Road WELSH	HPOOL WA 6106		Date analysed	31/05/2021
Client ID:		21-08919-3 NPA1-C			Date reported:	31/05/2021
Job ID:		21_0804				
Lab ID:		21_0804_03				
Revision No. :		0				
Comment:		None				
Analysis:		Laser diffraction size distribut	ion following ISO13320-1:2	020	Result units:	Volume
Dispersant:		Water			Analysis model:	General purpose
Additives:		10 millilitres sodium hexameta	aphosphate			
Sonication:		18 min sonication				
d((0.1)	134.79 µm	d(0.5)	253.19 µm	d(0.9)	440.18 µm

Size (µm)	Vol In %						
0.020		3.991		63.246		251.785	
	0.00		0.00		49.57		46.94
3.991		63.246		251.785		500.000	
Cla	ay	S	ilt	Fine	sand	Medium	n sand
-							
		Size (µm)	Vol In %	Size (µm)	Vol In %		
		500.000		2000.000			
			3.34		0.14		
		2000.000		10000.000			
		Coarse	e sand	Gra	ivel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 Beau Duval-Jenner


 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

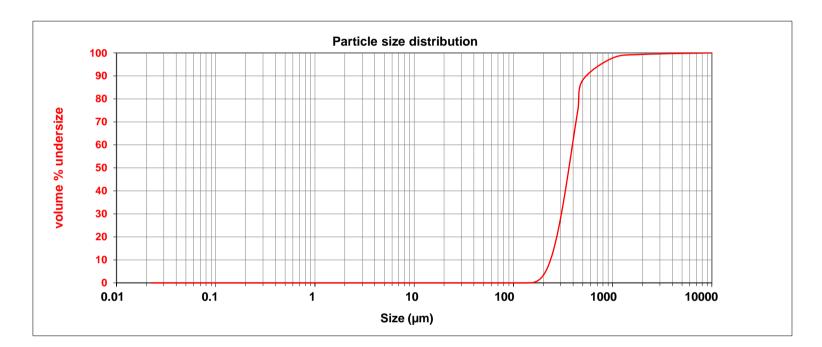
Client:	Eurofins ARL Pty Ltd			Date received:	17/05/2021
Client address:	46 - 48 Banksia Roa	WELSHPOOL WA 6106		Date analysed	31/05/2021
Client ID:	21-08919-4 NPA2			Date reported:	31/05/2021
Job ID:	21_0804				
Lab ID:	21_0804_04				
Revision No. :	0				
Comment:	None				
Analysis:	Laser diffraction size	distribution following ISO13320-1	1:2020	Result units:	Volume
Dispersant:	Water			Analysis model:	General purpose
Additives:	10 millilitres sodium	exametaphosphate			
Sonication:	17 min sonication				
d().1) 116.90 μm	d(0.5)	202.92 µm	d(0.9)	364.25 µm

Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %	Size (µm)	Vol In 🤋
0.020		3.991			63.246		251.785	
	0.00		0.00			68.19		30.14
3.991		63.246			251.785		500.000	
CI	ay	S	ilt		Fine	sand	Mediur	n sand
				_				
		Size (µm)	Vol In %		Size (µm)	Vol In %		
		500.000			2000.000			
			1.53			0.14		
		2000.000			10000.000			
		Coarse	e sand		Gra	vel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 Beau Duval-Jenner


 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

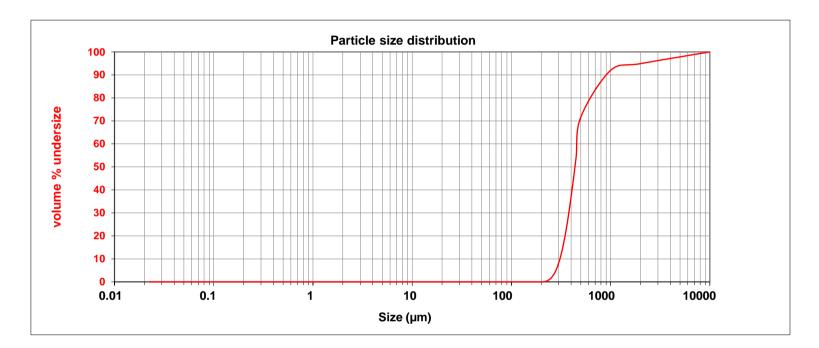
	d(0.1)	235.81 µm	d(0.5)	363.16 µm	d(0.9)	593.67 µm
Sonication:		19 min sonication				
Additives:		10 millilitres sodium hexameta	phosphate			
Dispersant:		Water			Analysis model:	General purpose
Analysis:		Laser diffraction size distributi	on following ISO13320-1:2	:020	Result units:	Volume
Comment:		None				
Revision No. :		0				
Lab ID:		21_0804_05				
Job ID:		21_0804				
Client ID:		21-08919-5 NPA3			Date reported:	31/05/2021
Client address	5:	46 - 48 Banksia Road WELSH	IPOOL WA 6106		Date analysed	31/05/2021
Client:		Eurofins ARL Pty Ltd			Date received:	17/05/2021

Size (µm)	Vol In %						
0.020		3.991		63.246		251.785	
	0.00		0.00		13.75		74.45
3.991		63.246		251.785		500.000	
CI	ay	S	ilt	Fine	sand	Mediur	n sand
		-		-			
		Size (µm)	Vol In %	Size (µm)	Vol In %		
		500.000		2000.000			
			11.14		0.65		
		2000.000		10000.000			
		Coarse	e sand	Gra	avel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 Beau Duval-Jenner


 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

Client:	Eurofins ARL Pty Ltd			Date received:	17/05/2021
Client address:	46 - 48 Banksia Road WELSI	HPOOL WA 6106		Date analysed	31/05/2021
Client ID:	21-08919-6 NPA4			Date reported:	31/05/2021
Job ID:	21_0804				
Lab ID:	21_0804_06				
Revision No. :	0				
Comment:	None				
Analysis:	Laser diffraction size distribut	ion following ISO13320-1:2	2020	Result units:	Volume
Dispersant:	Water			Analysis model:	General purpose
Additives:	10 millilitres sodium hexameta	aphosphate			
Sonication:	16 min sonication				
d(().1) 307.08 μm	d(0.5)	437.08 µm	d(0.9)	951.36 µm

Size (µm)	Vol In %	Size (µm)	Vol In %		Size (µm)	Vol In %	Size (µm)	Vol In %
0.020		3.991			63.246		251.785	
	0.00		0.00			1.71		69.93
3.991		63.246			251.785		500.000	
CI	ay	S	ilt		Fine	sand	Mediur	n sand
				-	-			
		Size (µm)	Vol In %		Size (µm)	Vol In %		
		500.000			2000.000			
			23.27			5.10		
		2000.000			10000.000			
		Coarse	e sand		Gra	vel		

Note 1: Data from 500µm to 10000µm by wet screening, from 0.02µm to 500µm by laser diffraction.

Note 2: The categories for Wentworth scale are solely a statement of size range classification. Unless otherwise stated, there has been no determination made as to whether the particulate assigned to a specific category is sedimentary or non-sedimentary.

 Analysed:
 Beau Duval-Jenner

 Reported:
 Beau Duval-Jenner

 Approved:
 Rick Hughes, B.Sc.(Hons)Physics, MAIP

 Be Confident We See More

CERTIFICATE OF ANALYSIS

Work Order	EP2001971	Page	: 1 of 33
Client		Laboratory	: Environmental Division Perth
Contact	: Russell Stevens	Contact	: Lauren Biagioni
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara WA Australia 6065
Telephone	:	Telephone	: 08 9406 1307
Project	: 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020	Date Samples Received	: 25-Feb-2020 13:00
Order number	:	Date Analysis Commenced	: 26-Feb-2020
C-O-C number	:	Issue Date	13-Mar-2020 15:57
Sampler	: Russell Stevens		
Site	:		
Quote number	: EP/101/20		Accreditation No. 825 Accredited for compliance with
No. of samples received	: 64		ISO/IEC 17025 - Testing
No. of samples analysed	: 64		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Aleksandar Vujkovic	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW	
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA	
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA	
David Viner	SENIOR LAB TECH	Perth Organics, Wangara, WA	
Matt Frost	Assistant Laboratory Manager	Brisbane Inorganics, Stafford, QLD	
Matt Frost	Assistant Laboratory Manager	Brisbane Organics, Stafford, QLD	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- TOC and TBT conducted by ALS Brisbane, NATA Site No. 818.
- PSD conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656.
- EG020-SD: Poor matrix spike recovery was obtained for copper, zinc on sample EP2001971-055 due to possible matrix interference. Results have been confirmed by re-extraction and re-analysis.
- EP132B-SD: Poor duplicate precision due to high moisture content and sample heterogeneity. Chromatogram profiles have been reviewed.
- EP132B-SD: Poor matrix spike recovery due to high moisture content and sample heterogeneity. Chromatogram profiles have been reviewed.
- EP132B-SD: LOR has been raised for various analytes on various samples due to high moisture content and/or matrix interferences.
- EP090 Organotin Analysis: The LOR for Tributyltin in sample ORA2-1 has been raised due to matrix interference.
- EN68: This analysis in accordance with National Ocean Disposal Guidelines, Commonwealth of Australia, 2002 (modified). Results reported are those determined on a 1:4 sediment/seawater elutriate without blank correction.

Analytical Results

Sub-Matrix: ELUTRIATE (Matrix: WATER)	Client sample ID			CH3-1	CH4-1	CH6-1	Elutriate Water	
	Client sampling date / time			20-Feb-2020 09:40	20-Feb-2020 09:00	18-Feb-2020 16:30	20-Feb-2020 09:30	
Compound	CAS Number	LOR	Unit	EP2001971-019	EP2001971-022	EP2001971-028	EP2001971-064	
				Result	Result	Result	Result	
EP090: Organotin Compounds (Soluble)								
Tributyltin	56573-85-4	2	ngSn/L	<2	<2	<2	<2	
EP090S: Organotin Surrogate								
Tripropyltin		5	%	46.1	39.8	56.5	91.5	

CERTIFICATE OF ANALYSIS

Work Order	EP2103295	Page	: 1 of 3
Client	: WA MARINE PTY LTD	Laboratory	Environmental Division Perth
Contact	: Russell Stevens	Contact	: Nick Courts
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara WA Australia 6065
Telephone	:	Telephone	: +61-8-9406 1301
Project	: 18WAU-0004 Geraldton Port Sediment Sampling 2021	Date Samples Received	: 25-Mar-2021 15:35
Order number	:	Date Analysis Commenced	: 30-Mar-2021
C-O-C number	:	Issue Date	: 01-Apr-2021 14:54
Sampler	: Russell Stevens		ICT-Apr-2021 14:54
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)			Sample ID	SPLIT-S4	 	
		Sampli	ng date / time	24-Mar-2021 00:00	 	
Compound	CAS Number	LOR	Unit	EP2103295-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 1	05-110°C)					
Moisture Content		1.0	%	37.2	 	
EK055: Ammonia as N						
Ammonia as N	7664-41-7	20	mg/kg	<20	 	
EK057G: Nitrite as N by Discrete An	alyser					
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	 	
EK058G: Nitrate as N by Discrete Ar	nalyser					
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1	 	
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser				
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	 	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser					
Total Kjeldahl Nitrogen as N		20	mg/kg	660	 	
EK062: Total Nitrogen as N (TKN + N	IOx)					
^ Total Nitrogen as N		20	mg/kg	660	 	
EK067G: Total Phosphorus as P by I	Discrete Analyser					
Total Phosphorus as P		2	mg/kg	378	 	
EK071G: Reactive Phosphorus as P	by discrete analyser	,				
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.2	 	

CERTIFICATE OF ANALYSIS 262074

Client Details	
Client	O2 Marine
Attention	Russell Stevens
Address	Suite 2, 4B Mews Road, FREMANTLE, WA, 6160

Sample Details	
Your Reference	18WAU-0004 - Geraldton Port Baseline
Number of Samples	1 Sediment
Date samples received	18/05/2021
Date completed instructions received	18/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	26/05/2021					
Date of Issue	26/05/2021					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

<u>Results Approved By</u> Heram Halim, Operations Manager Travis Carey, Organics - Team Leader

Authorised By

Mll h

Michael Kubiak, Laboratory Manager

Metals in sediment		
Our Reference		262074-1
Your Reference	UNITS	DUP2
Type of sample		Marine Sediment
Date digested	-	24/05/2021
Date analysed	-	24/05/2021
Aluminium	mg/kg	370
Arsenic	mg/kg	2.2
Cadmium	mg/kg	<0.1
Chromium	mg/kg	11
Copper	mg/kg	<0.5
Lead	mg/kg	1.4
Manganese	mg/kg	28
Nickel	mg/kg	0.7
Zinc	mg/kg	2.0
Silver	mg/kg	<0.1
Iron	mg/kg	570
Vanadium	mg/kg	2.6
Mercury	mg/kg	<0.01

Organotin Compounds in Soil		
Our Reference		262074-1
Your Reference	UNITS	DUP2
Type of sample		Marine Sediment
Date extracted	-	21/05/2021
Date analysed	-	25/05/2021
MonobutyItin as Sn	μg Sn/kg	<0.5
Dibutyltin as Sn	µg Sn/kg	<0.5
Tributyltin as Sn	μg Sn/kg	<0.5
Surrogate Triphenyltin	%	110

External Testing		
Our Reference		262074-1
Your Reference	UNITS	DUP2
Type of sample		Marine Sediment
Total Organic Carbon by Combustion	mg/kg	2,100

Moisture		
Our Reference		262074-1
Your Reference	UNITS	DUP2
Type of sample		Marine Sediment
Date prepared	-	24/05/2021
Date analysed	-	25/05/2021
Moisture	%	24

Method ID	Methodology Summary
Ext-054	Analysed by Envirolab Services Sydney, accreditation number 2901
INORG-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
METALS-020	Determination of various metals by ICP-AES.
METALS-021	Determination of Mercury by Cold Vapour AAS.
	For urine samples total Mercury is determined, however, mercury in urine is almost entirely in the inorganic form (CDC).
METALS-022	Determination of various metals by ICP-MS.
Org-025/026	Water extracts are derivatised and extracted. Soils are extracted with a mix of water and methanolic KOH solution, neutralised and then derivatised and further extracted. The extracts are analysed by GC-MSMS. Alternatively, analyse directly by HS-GC-MSMS.

QUALITY	Duplicate			Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			24/05/2021	[NT]		[NT]	[NT]	24/05/2021	
Date analysed	-			24/05/2021	[NT]		[NT]	[NT]	24/05/2021	
Aluminium	mg/kg	1	METALS-020	<1	[NT]		[NT]	[NT]	110	
Arsenic	mg/kg	0.5	METALS-022	<0.5	[NT]		[NT]	[NT]	101	
Cadmium	mg/kg	0.1	METALS-022	<0.1	[NT]		[NT]	[NT]	99	
Chromium	mg/kg	0.2	METALS-022	<0.2	[NT]		[NT]	[NT]	100	
Copper	mg/kg	0.5	METALS-022	<0.5	[NT]		[NT]	[NT]	96	
Lead	mg/kg	0.5	METALS-022	<0.5	[NT]		[NT]	[NT]	104	
Manganese	mg/kg	1	METALS-022	<1	[NT]		[NT]	[NT]	96	
Nickel	mg/kg	0.5	METALS-022	<0.5	[NT]		[NT]	[NT]	97	
Zinc	mg/kg	0.5	METALS-022	<0.5	[NT]		[NT]	[NT]	100	
Silver	mg/kg	0.1	METALS-022	<0.1	[NT]		[NT]	[NT]	100	
Iron	mg/kg	1	METALS-020	<1	[NT]		[NT]	[NT]	104	
Vanadium	mg/kg	0.5	METALS-022	<0.5	[NT]		[NT]	[NT]	101	
Mercury	mg/kg	0.01	METALS-021	<0.01	[NT]		[NT]	[NT]	102	

QUALITY CONT	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	262074-1
Date extracted	-			21/05/2021	[NT]		[NT]	[NT]	21/05/2021	21/05/2021
Date analysed	-			25/05/2021	[NT]		[NT]	[NT]	25/05/2021	25/05/2021
Monobutyltin as Sn	µg Sn/kg	0.5	Org-025/026	<0.5	[NT]		[NT]	[NT]	[NT]	[NT]
Dibutyltin as Sn	µg Sn/kg	0.5	Org-025/026	<0.5	[NT]		[NT]	[NT]	70	70
Tributyltin as Sn	µg Sn/kg	0.5	Org-025/026	<0.5	[NT]		[NT]	[NT]	80	81
Surrogate Triphenyltin	%		Org-025/026	110	[NT]	[NT]	[NT]	[NT]	112	118

QUALITY CONTROL: External Testing						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Total Organic Carbon by Combustion	mg/kg	100	Ext-054	<100	[NT]	[NT]		[NT]	103	[NT]

QUALITY CONTROL: Moisture						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			24/05/2021	[NT]		[NT]	[NT]	[NT]	[NT]	
Date analysed	-			25/05/2021	[NT]		[NT]	[NT]	[NT]	[NT]	
Moisture	%	0.1	INORG-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TOC analysed by Envorolab Services Pty Ltd, NSW, report reference 269471.

Appendix D Laboratory QA/QC Reports

This report must not be reproduced except in full without prior written consent.

This Quality Control Report is issued in accordance with Section 18 of the ARL Quality Management Manual. All QC parameters are contained within the relevant ARL Method as indicated by the method reference, either on this report or the Laboratory Report.

Acceptance of Holding Times, Duplicate RPD, Spike, LCS and CRM Recoveries are determined at the time of analysis by the Signatory indicated on the Laboratory Report.

DEFINITIONS

Duplicate Analysis

A sample, chosen randomly by the analyst at the time of sample preparation, analysed in duplicate.

RPD

Relative Percent Difference is the absolute difference between the sample and a duplicate analysis compared to the average of the two analytical results. Acceptance Limits can be exceeded by matrix interference or when the result is less than 5 times the LOR.

Matrix Spike

An additional portion of sample to which known amounts of the target analytes are added before sample preparation. Acceptance Limits can be exceeded by matrix interference or when the target analytes are present in the sample.

Certified Reference Material (CRM)

A commercially available certified solution/mixture of the target analyte of known concentration.

Laboratory Control Sample (LCS)

An in-house certified solution/mixture of the target analyte of known concentration.

Quality Control Report

Job Number: 19-09631-A Date: 9/09/2019

Metals in Soil and Sediment

Holding Time Criteria	Date	
Extracted	25/07/2019]
Analysed	25/07/2019	
Duplicate Analysis (19-11434-2)	RPD (%)	Limits (%)
Copper	0	25
Zinc	4	25
Duplicate Analysis (19-11526-30)	RPD (%)	Limits (%)
Cadmium	0	200
Copper	0	50
Lead	0	200
Zinc	0	200
Blank Analysis	Result (mg/kg)	Limit (mg/kg)
Cadmium	<0.1	0.1
Copper	<1	1
Lead	<1	1
Zinc	<1	1
Matrix Spike (19-11526-30)	Recovery (%)	Limits (%)
Cadmium	94	80 - 120
Copper	86	80 - 120
Zinc	92	80 - 120
Certified Reference Material	Recovery (%)	Limits (%)
Cadmium	106	80 - 120
Copper	118	80 - 120
Lead	104	80 - 120
Zinc	102	80 - 120

Soil Parameters

Holding Time Criteria	Date
Analysed	23/07/19

QUALITY CONTROL REPORT

Work Order	: EP1905988	Page	: 1 of 4	
Client	: WA MARINE PTY LTD	Laboratory	: Environmental Division Perth	
Contact	: Russell Stevens	Contact	: Customer Services EP	
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara WA Aust	ralia 6065
Telephone	:	Telephone	: +61-8-9406 1301	
Project	: 18WAU-0004 Geraldton Port Sediment Sampling 2019	Date Samples Received	: 20-Jun-2019	AMUID A
Order number	:	Date Analysis Commenced	: 21-Jun-2019	
C-O-C number	:	Issue Date	: 28-Jun-2019	
Sampler	: Russell Stevens			ac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Sarah Ashworth	Laboratory Manager - Brisbane	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)-SD: 1	Total Metals in Sedime	nts by ICP-AES (QC Lot: 2424526)							
EP1905988-001	TRIP-S1	EG005-SD: Aluminium	7429-90-5	50	mg/kg	1460	1460	0.00	0% - 20%
		EG005-SD: Iron	7439-89-6	50	mg/kg	3170	3060	3.53	0% - 20%
EG035T: Total Reco	overable Mercury by Fl	MS (Low Level) (QC Lot: 2424524)							
EP1905988-001	TRIP-S1	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.00	No Limit
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2419014)							
EP1905806-004	Anonymous	EA055: Moisture Content		0.1	%	13.2	13.2	0.00	0% - 50%
EP1905984-002	Anonymous	EA055: Moisture Content		0.1	%	7.8	8.5	8.27	No Limit
EG020-SD: Total Me	etals in Sediments by IC	CPMS (QC Lot: 2424525)							
EP1905988-001	TRIP-S1	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	0.5	0.5	0.00	No Limit
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	0.2	0.2	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	3.74	3.93	4.95	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	14.4	16.6	14.4	0% - 50%
		EG020-SD: Copper	7440-50-8	1	mg/kg	74.8	82.2	9.42	0% - 20%
		EG020-SD: Lead	7439-92-1	1	mg/kg	13.6	15.3	12.1	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	2.3	2.1	9.36	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	147	154	4.30	0% - 20%
		EG020-SD: Manganese	7439-96-5	10	mg/kg	37	34	8.59	No Limit
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	9.5	13.6	35.4	No Limit
EP003: Total Organi	ic Carbon (TOC) in Soil	(QC Lot: 2427108)							
EP1905659-002	Anonymous	EP003: Total Organic Carbon		0.02	%	0.36	0.39	6.90	0% - 50%
EP090: Organotin C	ompounds (QC Lot: 24	120559)							
EM1909558-001	Anonymous	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
EP1905988-002	TRIP-S2	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	3.2	4.7	38.4	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)-SD: Total Metals in Sediments by I	CP-AES (QCLot: 2424526)						
EG005-SD: Aluminium	7429-90-5	50	mg/kg	<50				
EG005-SD: Iron	7439-89-6	50	mg/kg	<50				
EG035T: Total Recoverable Mercury by FIMS (Lo	w Level) (QCLot: 2424524	-)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	102	80	120
EG020-SD: Total Metals in Sediments by ICPMS((QCLot: 2424525)							
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	98.8	74	130
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	99.0	97	113
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	42.2 mg/kg	93.1	72	152
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	93.7	76	116
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	40.33169 mg/kg	89.8	74	124
EG020-SD: Manganese	7439-96-5	10	mg/kg	<10				
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	112	81	135
EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1				
EG020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0				
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	113	81	143
EP003: Total Organic Carbon (TOC) in Soil (QCLo	ot: 2427108)							
EP003: Total Organic Carbon		0.02	%	<0.02	0.44 %	96.9	70	130
EP090: Organotin Compounds (QCLot: 2420559)								
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	92.9	52	139

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)-SD:	Total Metals in Sediments by ICP-AES (QCLot: 242452	:6)					
EP1905988-002	TRIP-S2	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not Determined	70	130
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not Determined	70	130
EG035T: Total Rec	overable Mercury by FIMS (Low Level) (QCLot: 24245	24)					

Page	: 4 of 4
Work Order	: EP1905988
Client	: WA MARINE PTY LTD
Project	: 18WAU-0004 Geraldton Port Sediment Sampling 2019

Sub-Matrix: SOIL				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 242452	4) - continued					
EP1905988-002	TRIP-S2	EG035T-LL: Mercury	7439-97-6	10 mg/kg	91.5	70	130
EG020-SD: Total N	letals in Sediments by ICPMS (QCLot: 2424525)						
EP1905988-002	TRIP-S2	EG020-SD: Arsenic	7440-38-2	50 mg/kg	97.5	70	130
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	97.7	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	87.5	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	71.8	70	130
		EG020-SD: Lead	7439-92-1	50 mg/kg	81.4	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	93.6	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	110	70	130
EP090: Organotin	Compounds (QCLot: 2420559)						
EM1909558-002	Anonymous	EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	98.0	20	130

CERTIFICATE OF ANALYSIS

Work Order	EP2001971	Page	: 1 of 33
Client		Laboratory	: Environmental Division Perth
Contact	: Russell Stevens	Contact	: Lauren Biagioni
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara WA Australia 6065
Telephone	:	Telephone	: 08 9406 1307
Project	: 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020	Date Samples Received	: 25-Feb-2020 13:00
Order number	:	Date Analysis Commenced	: 26-Feb-2020
C-O-C number	:	Issue Date	13-Mar-2020 15:57
Sampler	: Russell Stevens		
Site	:		
Quote number	: EP/101/20		Accreditation No. 825 Accredited for compliance with
No. of samples received	: 64		ISO/IEC 17025 - Testing
No. of samples analysed	: 64		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Aleksandar Vujkovic	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW	
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA	
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA	
David Viner	SENIOR LAB TECH	Perth Organics, Wangara, WA	
Matt Frost	Assistant Laboratory Manager	Brisbane Inorganics, Stafford, QLD	
Matt Frost	Assistant Laboratory Manager	Brisbane Organics, Stafford, QLD	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- TOC and TBT conducted by ALS Brisbane, NATA Site No. 818.
- PSD conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656.
- EG020-SD: Poor matrix spike recovery was obtained for copper, zinc on sample EP2001971-055 due to possible matrix interference. Results have been confirmed by re-extraction and re-analysis.
- EP132B-SD: Poor duplicate precision due to high moisture content and sample heterogeneity. Chromatogram profiles have been reviewed.
- EP132B-SD: Poor matrix spike recovery due to high moisture content and sample heterogeneity. Chromatogram profiles have been reviewed.
- EP132B-SD: LOR has been raised for various analytes on various samples due to high moisture content and/or matrix interferences.
- EP090 Organotin Analysis: The LOR for Tributyltin in sample ORA2-1 has been raised due to matrix interference.
- EN68: This analysis in accordance with National Ocean Disposal Guidelines, Commonwealth of Australia, 2002 (modified). Results reported are those determined on a 1:4 sediment/seawater elutriate without blank correction.

Sub-Matrix: ELUTRIATE (Matrix: WATER)		Clie	ent sample ID	CH3-1	CH4-1	CH6-1	Elutriate Water	
	Cl	ient sampli	ng date / time	20-Feb-2020 09:40	20-Feb-2020 09:00	18-Feb-2020 16:30	20-Feb-2020 09:30	
Compound	CAS Number	LOR	Unit	EP2001971-019	EP2001971-022	EP2001971-028	EP2001971-064	
				Result	Result	Result	Result	
EP090: Organotin Compounds (Soluble)								
Tributyltin	56573-85-4	2	ngSn/L	<2	<2	<2	<2	
EP090S: Organotin Surrogate								
Tripropyltin		5	%	46.1	39.8	56.5	91.5	

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA1-1	ORA1-2	ORA1-3	ORA2-1	ORA2-2
	Cli	ient sampli	ng date / time	20-Feb-2020 11:25	20-Feb-2020 11:30	20-Feb-2020 11:40	20-Feb-2020 12:00	20-Feb-2020 12:05
Compound	CAS Number	LOR	Unit	EP2001971-001	EP2001971-002	EP2001971-003	EP2001971-004	EP2001971-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	31.8	34.2	37.0	61.3	54.9
EA150: Particle Sizing								
Clay (<4 μm)		1	%	3	2	2	12	10
Silt (4-62 µm)		1	%	1	1	2	10	9
Fine Sand (62-250 μm)		1	%	66	76	71	63	60
Medium Sand (250-500 µm)		1	%	24	18	21	11	18
Coarse Sand (500-2000 μm)		1	%	6	3	5	4	3
Gravel (2000-10000 μm)		1	%	1	<1	<1	1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.65	2.68	2.65	2.60	2.62
EG005(ED093)-SD: Total Metals in Sec	liments by ICP-AES	\$						
Aluminium	7429-90-5	50	mg/kg	200	150	110	360	320
Iron	7439-89-6	50	mg/kg	390	330	260	1080	990
Vanadium	7440-62-2	2	mg/kg	<2	<2	<2	3	<2
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	1.91	1.93	1.37	2.86	3.28
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	0.3	0.2
Copper	7440-50-8	1.0	mg/kg	<1.0	1.8	<1.0	31.3	28.7
Lead	7439-92-1	1.0	mg/kg	1.1	<1.0	<1.0	2.3	2.5
Manganese	7439-96-5	10	mg/kg	19	16	12	17	17
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	1.4	1.2
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	7440-66-6	1.0	mg/kg	2.6	3.2	3.6	53.2	52.5
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	2.2	2.3	2.0	3.1	3.2
EG035T: Total Recoverable Mercury b	v FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	0.38	0.18	0.20	2.21	1.07
P090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	<1.0	<0.5
EP132B: Polynuclear Aromatic Hydrod		0.0	pgering		0.0			0.0
Naphthalene	91-20-3	5	µg/kg	<5	<5	<5	12	18
2-Methylnaphthalene	91-20-3	5	μg/kg μg/kg	<5	<5	<5	<5	<5
≥-mearymaphanaiene	91-07-16	5	P9/N9		-5	-0		`

Page : 5 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA1-1	ORA1-2	ORA1-3	ORA2-1	ORA2-2
	Cli	ent sampli	ng date / time	20-Feb-2020 11:25	20-Feb-2020 11:30	20-Feb-2020 11:40	20-Feb-2020 12:00	20-Feb-2020 12:05
Compound	CAS Number	LOR	Unit	EP2001971-001	EP2001971-002	EP2001971-003	EP2001971-004	EP2001971-005
				Result	Result	Result	Result	Result
P132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	10	11
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<5	<5
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<5	<5
Phenanthrene	85-01-8	4	µg/kg	<4	<4	<4	<5	6
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	<5	6
Fluoranthene	206-44-0	4	µg/kg	<4	<4	<4	<5	<5
Pyrene	129-00-0	4	µg/kg	<4	<4	<4	<5	<5
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	<4	<5	<5
Chrysene	218-01-9	4	µg/kg	<4	<4	<4	<5	<5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	<4	<5	<5
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	<4	<5	<5
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	<4	<5	<5
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	<4	<5	<5
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<5	<5
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	<4	<5	<5
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<5	<5
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	<5	<5
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	<4	<4	<4	22	41
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	<4	<4	<5	<5
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	5	5	<5	<5
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	10	10	10	10
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	74.5	66.5	79.9	92.6	60.3
P132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	78.9	81.2	84.1	90.4	85.2
Anthracene-d10	1719-06-8	10	%	71.2	77.3	75.5	75.0	71.7
4-Terphenyl-d14	1718-51-0	10	%	85.1	73.6	93.7	119	111

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA2-3	FBH1-1	FBH1-2	FBH1-3	FBH2-1
	Cli	ent sampli	ng date / time	20-Feb-2020 12:10	18-Feb-2020 11:00	18-Feb-2020 11:10	18-Feb-2020 11:20	18-Feb-2020 10:30
Compound	CAS Number	LOR	Unit	EP2001971-006	EP2001971-007	EP2001971-008	EP2001971-009	EP2001971-010
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	47.4	40.5	40.7	39.9	42.9
EA150: Particle Sizing								
Clay (<4 μm)		1	%	5	15	13	13	13
Silt (4-62 µm)		1	%	1	12	13	12	15
Fine Sand (62-250 μm)		1	%	80	54	56	53	68
Medium Sand (250-500 μm)		1	%	13	8	8	8	2
Coarse Sand (500-2000 μm)		1	%	1	7	7	8	1
Gravel (2000-10000 μm)		1	%	<1	3	4	5	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.62	2.62	2.63	2.64	2.54
EG005(ED093)-SD: Total Metals in Sed	liments by ICP-AES	;						
Aluminium	7429-90-5	50	mg/kg	190	1750	1920	2010	2850
Iron	7439-89-6	50	mg/kg	460	5030	5160	5330	6070
Vanadium	7440-62-2	2	mg/kg	<2	12	12	11	12
G020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	2.06	5.82	6.26	5.42	6.68
Cadmium	7440-43-9	0.1	mg/kg	0.2	0.2	0.2	0.3	0.3
Copper	7440-50-8	1.0	mg/kg	8.9	373	460	371	349
Lead	7439-92-1	1.0	mg/kg	1.3	28.3	29.3	27.4	24.2
Manganese	7439-96-5	10	mg/kg	16	26	26	26	31
Nickel	7440-02-0	1.0	mg/kg	<1.0	3.0	3.1	3.2	4.0
Silver	7440-22-4	0.1	mg/kg	<0.1	0.2	0.2	0.2	0.4
Zinc	7440-66-6	1.0	mg/kg	18.0	320	313	287	284
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	2.9	4.4	4.6	4.8	5.8
EG035T: Total Recoverable Mercury b	v FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	0.09	0.10	0.09	0.09
EP003: Total Organic Carbon (TOC) in	1							
Total Organic Carbon		0.02	%	0.32	0.79	0.84	0.86	1.03
P090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	27.1	27.2	27.2	16.9
EP132B: Polynuclear Aromatic Hydrod		0.0	pgering					
Naphthalene	91-20-3	5	µg/kg	8	9	12	10	8
2-Methylnaphthalene	91-20-3	5	μg/kg μg/kg	<5	<5	<5	<5	8 <5
z-metrymaphtnaiene	91-07-0	5	µg/kg	~~	-5	~5	-5	`

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	ORA2-3	FBH1-1	FBH1-2	FBH1-3	FBH2-1
	Cli	Client sampling date / time			18-Feb-2020 11:00	18-Feb-2020 11:10	18-Feb-2020 11:20	18-Feb-2020 10:30
Compound	CAS Number	LOR	Unit	EP2001971-006	EP2001971-007	EP2001971-008	EP2001971-009	EP2001971-010
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	6	5	5
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	<4	24	29	23	21
Anthracene	120-12-7	4	µg/kg	<4	6	9	6	6
Fluoranthene	206-44-0	4	µg/kg	<4	47	62	49	50
Pyrene	129-00-0	4	µg/kg	<4	43	61	45	49
Benz(a)anthracene	56-55-3	4	µg/kg	<4	21	28	22	24
Chrysene	218-01-9	4	µg/kg	<4	18	25	21	22
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	33	42	36	36
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	15	22	16	17
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	17	25	19	22
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	23	31	25	27
Perylene	198-55-0	4	µg/kg	<4	5	7	5	6
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	23	30	26	28
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	4	5	4	5
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	18	24	20	22
Coronene	191-07-1	5	µg/kg	<5	7	7	8	8
Sum of PAHs		4	µg/kg	8	313	429	340	356
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	36	48	39	42
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	36	48	39	42
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	36	48	39	42
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	82.8	82.0	75.0	61.6	89.4
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	76.6	74.6	86.1	83.9	80.1
Anthracene-d10	1719-06-8	10	%	71.7	72.2	76.3	74.8	74.3
4-Terphenyl-d14	1718-51-0	10	%	86.9	97.1	110	91.8	91.9

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	FBH2-2	FBH2-3	CH1-1	CH1-2	CH1-3
	Clie	ent sampli	ng date / time	18-Feb-2020 10:40	18-Feb-2020 10:50	19-Feb-2020 10:50	19-Feb-2020 11:00	19-Feb-2020 11:15
Compound	CAS Number	LOR	Unit	EP2001971-011	EP2001971-012	EP2001971-013	EP2001971-014	EP2001971-015
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	43.9	44.7	51.7	53.6	49.6
EA150: Particle Sizing								
Clay (<4 μm)		1	%	10	12	21	25	19
Silt (4-62 µm)		1	%	19	16	28	26	27
Fine Sand (62-250 μm)		1	%	68	69	45	45	47
Medium Sand (250-500 μm)		1	%	2	2	5	1	4
Coarse Sand (500-2000 µm)		1	%	1	1	2	2	2
Gravel (2000-10000 μm)		1	%	<1	<1	<1	1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.51	2.51	2.53	2.52	2.54
EG005(ED093)-SD: Total Metals in Sed	liments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	2200	3100	2760	2310	2820
Iron	7439-89-6	50	mg/kg	4760	6440	6770	6060	6800
Vanadium	7440-62-2	2	mg/kg	10	13	17	16	17
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.83	7.18	7.49	7.45	7.13
Cadmium	7440-43-9	0.1	mg/kg	0.2	0.3	1.1	0.9	1.0
Copper	7440-50-8	1.0	mg/kg	286	370	206	184	198
Lead	7439-92-1	1.0	mg/kg	22.7	27.1	34.4	33.6	37.5
Manganese	7439-96-5	10	mg/kg	26	32	55	52	109
Nickel	7440-02-0	1.0	mg/kg	4.2	4.5	4.8	4.9	5.2
Silver	7440-22-4	0.1	mg/kg	0.2	0.3	0.4	0.4	0.5
Zinc	7440-66-6	1.0	mg/kg	265	303	342	308	336
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	4.4	6.3	5.6	5.0	5.5
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.05	0.10	0.06	0.05	0.05
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	1.08	1.19	1.67	1.85	1.84
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	17.9	21.7	2.1	2.0	1.4
-		0.0	pgolikg		21. 7	4. 1	2.0	1.7
EP132B: Polynuclear Aromatic Hydroc		5		8	9	12	10	9
Naphthalene	91-20-3	5	µg/kg	8 <5	8 <5	12	10 6	9 <5
2-Methylnaphthalene	91-57-6	5	µg/kg	<0	<0	1	0	<0

Page : 9 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	FBH2-2	FBH2-3	CH1-1	CH1-2	CH1-3
	Cli	ent sampli	ng date / time	18-Feb-2020 10:40	18-Feb-2020 10:50	19-Feb-2020 10:50	19-Feb-2020 11:00	19-Feb-2020 11:15
Compound	CAS Number	LOR	Unit	EP2001971-011	EP2001971-012	EP2001971-013	EP2001971-014	EP2001971-015
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	4	4	<5	<5	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<5	<5	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<5	<5	<4
Phenanthrene	85-01-8	4	µg/kg	21	20	21	17	18
Anthracene	120-12-7	4	µg/kg	7	7	5	8	5
Fluoranthene	206-44-0	4	µg/kg	45	44	32	26	29
Pyrene	129-00-0	4	µg/kg	44	43	30	26	28
Benz(a)anthracene	56-55-3	4	µg/kg	21	21	14	13	14
Chrysene	218-01-9	4	µg/kg	20	18	12	10	12
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	34	33	21	19	19
Benzo(k)fluoranthene	207-08-9	4	µg/kg	16	18	10	8	10
Benzo(e)pyrene	192-97-2	4	µg/kg	19	20	12	12	12
Benzo(a)pyrene	50-32-8	4	µg/kg	24	25	17	16	17
Perylene	198-55-0	4	µg/kg	5	6	<5	<5	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	24	25	15	14	14
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	4	4	<5	<5	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	19	20	12	10	10
Coronene	191-07-1	5	µg/kg	8	7	<5	<5	<5
Sum of PAHs		4	µg/kg	323	323	220	195	197
Benzo(a)pyrene TEQ (zero)		4	µg/kg	37	39	23	21	22
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	37	39	25	23	24
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	37	39	27	25	26
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	88.9	97.2	75.5	79.7	73.1
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	73.3	70.5	92.6	82.1	81.6
Anthracene-d10	1719-06-8	10	%	71.6	70.1	78.9	71.6	71.2
4-Terphenyl-d14	1718-51-0	10	%	94.6	81.1	126	85.9	84.4

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH2-1	CH2-2	CH2-3	CH3-1	CH3-2
	Clie	ent sampli	ng date / time	20-Feb-2020 10:50	20-Feb-2020 10:55	20-Feb-2020 11:00	20-Feb-2020 09:40	20-Feb-2020 09:50
Compound	CAS Number	LOR	Unit	EP2001971-016	EP2001971-017	EP2001971-018	EP2001971-019	EP2001971-020
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	40.0	43.0	44.2	37.3	38.4
A150: Particle Sizing								
Clay (<4 μm)		1	%	20	19	23	17	13
Silt (4-62 µm)		1	%	16	19	20	11	19
Fine Sand (62-250 μm)		1	%	49	46	46	41	37
Medium Sand (250-500 μm)		1	%	6	9	8	18	17
Coarse Sand (500-2000 μm)		1	%	7	4	3	9	10
Gravel (2000-10000 μm)		1	%	2	2	<1	3	5
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.59	2.58	2.58	2.68	2.64
EG005(ED093)-SD: Total Metals in Sed	iments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1440	1910	2220	1630	1870
Iron	7439-89-6	50	mg/kg	4350	5540	6190	4730	5410
Vanadium	7440-62-2	2	mg/kg	11	13	15	12	12
EG020-SD: Total Metals in Sediments I	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.11	6.31	6.88	5.47	5.53
Cadmium	7440-43-9	0.1	mg/kg	1.7	2.3	3.5	1.3	1.7
Copper	7440-50-8	1.0	mg/kg	196	252	327	171	208
Lead	7439-92-1	1.0	mg/kg	50.9	62.6	85.2	42.5	48.4
Manganese	7439-96-5	10	mg/kg	48	55	77	49	54
Nickel	7440-02-0	1.0	mg/kg	3.6	3.8	3.8	3.5	3.8
Silver	7440-22-4	0.1	mg/kg	0.5	0.8	0.8	0.5	0.5
Zinc	7440-66-6	1.0	mg/kg	517	658	972	435	540
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.5	4.1	4.6	3.6	4.0
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.05	0.06	0.04	0.04
N68: Seawater Elutriate Testing Proc								
Seawater Sampling Date		-	-				27/02/2020	
EP003: Total Organic Carbon (TOC) in								1
Total Organic Carbon (TOC) in		0.02	%	1.19	1.29	1.29	0.90	0.88
-		0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.00	3.00
P090: Organotin Compounds Tributyltin	E6570 05 4	0.5	µgSn/kg	2.9	2.7	3.2	5.3	2.4
mouyilii	56573-85-4	0.0	pgon/kg	2 .J	2.1	J.2	U.U	2.4

Page : 11 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH2-1	CH2-2	CH2-3	CH3-1	CH3-2
	Cli	ient sampli	ng date / time	20-Feb-2020 10:50	20-Feb-2020 10:55	20-Feb-2020 11:00	20-Feb-2020 09:40	20-Feb-2020 09:50
Compound	CAS Number	LOR	Unit	EP2001971-016	EP2001971-017	EP2001971-018	EP2001971-019	EP2001971-020
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	µg/kg	17	10	43	41	7
2-Methylnaphthalene	91-57-6	5	µg/kg	19	<5	20	9	<5
Acenaphthylene	208-96-8	4	µg/kg	6	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	75	<4	36	4	<4
Fluorene	86-73-7	4	µg/kg	54	<4	39	5	<4
Phenanthrene	85-01-8	4	µg/kg	387	37	283	50	33
Anthracene	120-12-7	4	µg/kg	48	6	26	8	8
Fluoranthene	206-44-0	4	µg/kg	340	69	193	49	76
Pyrene	129-00-0	4	µg/kg	320	58	154	44	66
Benz(a)anthracene	56-55-3	4	µg/kg	125	31	58	16	38
Chrysene	218-01-9	4	µg/kg	90	26	46	13	31
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	123	43	56	19	43
Benzo(k)fluoranthene	207-08-9	4	µg/kg	66	21	26	8	20
Benzo(e)pyrene	192-97-2	4	µg/kg	78	30	35	10	23
Benzo(a)pyrene	50-32-8	4	µg/kg	107	33	48	14	31
Perylene	198-55-0	4	µg/kg	25	9	11	<4	8
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	87	32	34	11	22
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	17	8	8	<4	6
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	68	25	27	8	18
Coronene	191-07-1	5	µg/kg	20	6	7	<5	<5
^ Sum of PAHs		4	µg/kg	2070	444	1150	309	430
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	164	54	74	19	49
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	164	54	74	21	49
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	164	54	74	23	49
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	97.5	80.3	73.9	87.2	68.4
EP132T: Base/Neutral Extractable \$	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	98.0	93.0	86.2	78.1	92.2
Anthracene-d10	1719-06-8	10	%	83.0	79.6	72.8	71.5	80.6
4-Terphenyl-d14	1718-51-0	10	%	103	98.9	89.4	89.2	102

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH3-3	CH4-1	CH4-2	CH4-3	CH5-1
	Clie	ent sampli	ng date / time	20-Feb-2020 10:00	20-Feb-2020 09:00	20-Feb-2020 09:15	20-Feb-2020 09:20	18-Feb-2020 17:10
Compound	CAS Number	LOR	Unit	EP2001971-021	EP2001971-022	EP2001971-023	EP2001971-024	EP2001971-025
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	37.4	44.6	44.4	36.1	37.1
A150: Particle Sizing								
Clay (<4 μm)		1	%	14	23	16	11	18
Silt (4-62 µm)		1	%	18	23	29	12	13
Fine Sand (62-250 μm)		1	%	39	38	42	16	33
Medium Sand (250-500 μm)		1	%	17	10	8	12	16
Coarse Sand (500-2000 µm)		1	%	10	5	4	16	15
Gravel (2000-10000 µm)		1	%	3	1	1	33	5
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.64	2.60	2.55	2.62	2.56
EG005(ED093)-SD: Total Metals in Sed	iments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1670	1840	2480	1790	1720
Iron	7439-89-6	50	mg/kg	4570	5400	6560	14800	4590
Vanadium	7440-62-2	2	mg/kg	12	14	16	13	12
EG020-SD: Total Metals in Sediments b								
Arsenic	7440-38-2	1.00	mg/kg	5.07	6.14	6.60	7.72	5.43
Cadmium	7440-43-9	0.1	mg/kg	1.7	1.3	1.7	1.0	0.9
Copper	7440-50-8	1.0	mg/kg	182	198	251	161	135
Lead	7439-92-1	1.0	mg/kg	40.4	46.6	46.8	35.7	27.9
Manganese	7439-96-5	10	mg/kg	53	50	55	159	46
Nickel	7440-02-0	1.0	mg/kg	3.3	3.8	4.1	7.1	3.2
Silver	7440-22-4	0.1	mg/kg	0.6	0.6	0.6	0.4	0.4
Zinc	7440-66-6	1.0	mg/kg	512	431	557	372	296
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.6	4.2	4.7	3.9	3.6
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.04	0.06	0.05	0.05
N68: Seawater Elutriate Testing Proce								
Seawater Sampling Date		-	-		27/02/2020			
P003: Total Organic Carbon (TOC) in								1
Total Organic Carbon (TOC) In		0.02	%	0.72	1.03	0.93	0.63	0.73
-		0.02	/0	V./ Z	1.03	0.00	0.00	0.75
P090: Organotin Compounds		0.5		2.0	3.0	3.2	4.0	2.1
Tributyltin	56573-85-4	0.5	µgSn/kg	3.8	3.0	3.2	4.9	2.1

Page : 13 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	СН3-3	CH4-1	CH4-2	CH4-3	CH5-1
	Cli	ient sampli	ng date / time	20-Feb-2020 10:00	20-Feb-2020 09:00	20-Feb-2020 09:15	20-Feb-2020 09:20	18-Feb-2020 17:10
Compound	CAS Number	LOR	Unit	EP2001971-021	EP2001971-022	EP2001971-023	EP2001971-024	EP2001971-025
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	µg/kg	6	11	9	7	8
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	6	<5	<5	<5
Acenaphthylene	208-96-8	4	µg/kg	<4	4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	9	5	<4	14
Fluorene	86-73-7	4	µg/kg	<4	8	5	<4	12
Phenanthrene	85-01-8	4	µg/kg	14	153	63	11	131
Anthracene	120-12-7	4	µg/kg	4	15	10	<4	21
Fluoranthene	206-44-0	4	µg/kg	22	176	79	20	195
Pyrene	129-00-0	4	µg/kg	23	142	66	20	121
Benz(a)anthracene	56-55-3	4	µg/kg	10	51	28	12	51
Chrysene	218-01-9	4	µg/kg	9	41	23	10	36
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	13	53	30	18	46
Benzo(k)fluoranthene	207-08-9	4	µg/kg	7	27	17	9	22
Benzo(e)pyrene	192-97-2	4	µg/kg	8	28	20	11	25
Benzo(a)pyrene	50-32-8	4	µg/kg	11	39	25	14	38
Perylene	198-55-0	4	µg/kg	<4	8	6	4	10
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	9	23	18	13	22
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	6	4	<4	8
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	6	18	13	9	19
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
^ Sum of PAHs		4	µg/kg	142	818	421	158	779
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	15	60	38	19	60
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	17	60	38	21	60
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	19	60	38	23	60
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	79.4	96.0	104	92.5	88.3
EP132T: Base/Neutral Extractable \$	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	82.0	77.2	82.9	85.8	80.6
Anthracene-d10	1719-06-8	10	%	70.6	70.6	73.5	77.3	76.2
4-Terphenyl-d14	1718-51-0	10	%	118	83.7	93.4	93.6	96.4

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH5-2	CH5-3	CH6-1	CH6-2	CH6-3
	Clie	ent sampli	ng date / time	18-Feb-2020 17:15	18-Feb-2020 17:20	18-Feb-2020 16:30	18-Feb-2020 16:40	18-Feb-2020 16:45
Compound	CAS Number	LOR	Unit	EP2001971-026	EP2001971-027	EP2001971-028	EP2001971-029	EP2001971-030
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	32.7	32.9	37.6	39.2	34.8
A150: Particle Sizing								
Clay (<4 μm)		1	%	13	16	17	19	13
Silt (4-62 µm)		1	%	12	9	12	10	13
Fine Sand (62-250 μm)		1	%	31	36	38	38	33
Medium Sand (250-500 μm)		1	%	19	19	19	18	23
Coarse Sand (500-2000 μm)		1	%	18	15	13	13	15
Gravel (2000-10000 μm)		1	%	7	5	1	1	3
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.57	2.57	2.60	2.57	2.56
EG005(ED093)-SD: Total Metals in Sed	iments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1620	1490	1230	1700	1580
Iron	7439-89-6	50	mg/kg	5110	4600	3600	4360	4090
Vanadium	7440-62-2	2	mg/kg	11	10	11	12	11
EG020-SD: Total Metals in Sediments I	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.54	4.68	4.98	5.47	4.98
Cadmium	7440-43-9	0.1	mg/kg	1.1	0.9	0.7	1.0	0.9
Copper	7440-50-8	1.0	mg/kg	145	117	124	142	131
Lead	7439-92-1	1.0	mg/kg	27.6	22.5	28.1	27.6	25.6
Manganese	7439-96-5	10	mg/kg	46	44	44	49	55
Nickel	7440-02-0	1.0	mg/kg	3.2	2.8	2.5	3.0	2.9
Silver	7440-22-4	0.1	mg/kg	0.4	0.3	0.4	0.3	0.3
Zinc	7440-66-6	1.0	mg/kg	327	282	233	309	285
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.6	3.2	3.1	3.8	3.6
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	0.03	0.03	0.03	0.04	0.03
EN68: Seawater Elutriate Testing Proc								
Seawater Sampling Date		-	-			27/02/2020		
EP003: Total Organic Carbon (TOC) in								1
Total Organic Carbon (TOC) in		0.02	%	0.71	0.48	0.59	0.73	0.62
-		0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.00	0.1.0	0.02
P090: Organotin Compounds Tributyltin	E6570 05 4	0.5	µgSn/kg	1.4	1.7	8.2	2.2	1.6
mouyiiii	56573-85-4	0.0	µg3il/kg	1.4	1.7	0.2	£.£	1.0

Page : 15 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH5-2	CH5-3	CH6-1	CH6-2	CH6-3
	Cli	ient sampli	ng date / time	18-Feb-2020 17:15	18-Feb-2020 17:20	18-Feb-2020 16:30	18-Feb-2020 16:40	18-Feb-2020 16:45
Compound	CAS Number	LOR	Unit	EP2001971-026	EP2001971-027	EP2001971-028	EP2001971-029	EP2001971-030
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	µg/kg	6	7	11	10	6
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	<5	<5	<5
Acenaphthylene	208-96-8	4	µg/kg	10	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	5	<4	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	31	16	13	15	5
Anthracene	120-12-7	4	µg/kg	20	<4	<4	8	<4
Fluoranthene	206-44-0	4	µg/kg	58	19	17	23	7
Pyrene	129-00-0	4	µg/kg	52	17	16	21	6
Benz(a)anthracene	56-55-3	4	µg/kg	52	8	8	10	<4
Chrysene	218-01-9	4	µg/kg	37	6	7	8	<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	90	10	12	13	5
Benzo(k)fluoranthene	207-08-9	4	µg/kg	37	5	6	8	<4
Benzo(e)pyrene	192-97-2	4	µg/kg	47	6	7	8	<4
Benzo(a)pyrene	50-32-8	4	µg/kg	68	9	9	10	<4
Perylene	198-55-0	4	µg/kg	16	<4	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	47	6	6	7	<4
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	15	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	39	5	4	5	<4
Coronene	191-07-1	5	µg/kg	6	<5	<5	<5	<5
^ Sum of PAHs		4	µg/kg	636	114	116	146	29
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	106	12	12	14	<4
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	106	14	14	16	5
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	106	16	16	18	10
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	57.4	87.2	97.8	104	95.4
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	88.8	97.6	82.8	87.0	74.2
Anthracene-d10	1719-06-8	10	%	79.9	82.6	73.5	76.5	73.0
4-Terphenyl-d14	1718-51-0	10	%	108	101	87.8	72.1	76.5

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH9-1	CH9-2	СН9-3	CH10-1	CH10-2
	Clie	ent sampli	ng date / time	18-Feb-2020 17:45	18-Feb-2020 18:00	18-Feb-2020 18:10	19-Feb-2020 11:40	19-Feb-2020 11:45
Compound	CAS Number	LOR	Unit	EP2001971-031	EP2001971-032	EP2001971-033	EP2001971-034	EP2001971-035
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	37.9	28.9	28.7	56.2	56.2
EA150: Particle Sizing								
Clay (<4 µm)		1	%	14	7	8	15	17
Silt (4-62 μm)		1	%	11	7	4	20	15
Fine Sand (62-250 µm)		1	%	19	12	11	49	41
Medium Sand (250-500 μm)		1	%	10	12	11	10	8
Coarse Sand (500-2000 μm)		1	%	19	28	23	5	11
Gravel (2000-10000 μm)		1	%	29	34	43	1	8
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55	2.55	2.55	2.35	2.35
EG005(ED093)-SD: Total Metals in Se	diments by ICP-AFS							
Aluminium	7429-90-5	50	mg/kg	2440	1120	980	1720	1440
Iron	7439-89-6	50	mg/kg	4660	2920	2620	4220	3460
Vanadium	7440-62-2	2	mg/kg	14	13	10	11	12
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	6.51	5.15	4.41	6.00	6.35
Cadmium	7440-43-9	0.1	mg/kg	0.9	0.5	0.4	0.5	0.5
Copper	7440-50-8	1.0	mg/kg	146	47.4	50.6	74.5	50.6
Lead	7439-92-1	1.0	mg/kg	37.6	10.5	11.1	14.3	10.0
Manganese	7439-96-5	10	mg/kg	67	69	69	37	54
Nickel	7440-02-0	1.0	mg/kg	3.5	2.1	1.7	3.7	3.0
Silver	7440-22-4	0.1	mg/kg	0.5	0.2	0.1	0.3	0.1
Zinc	7440-66-6	1.0	mg/kg	305	111	122	147	101
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	4.4	3.1	2.8	3.7	3.8
EG035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.01	0.02	0.03	0.02
EP003: Total Organic Carbon (TOC) ir								
Total Organic Carbon (TOC) In		0.02	%	0.38	0.36	0.23	2.16	1.64
		0.02	,,,	0.00	0.00	0.20	2.10	1.04
EP090: Organotin Compounds Tributyltin	50572.05.4	0.5		1 2	1.4	0.0	1.4	0.9
-	56573-85-4	0.5	µgSn/kg	1.3	1.4	0.9	1.4	0.9
EP132B: Polynuclear Aromatic Hydro		_				-		
Naphthalene	91-20-3	5	µg/kg	6	6	<5	16	23
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	<5	7	<5

Page : 17 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH9-1	CH9-2	СН9-3	CH10-1	CH10-2
	Cli	ent sampli	ng date / time	18-Feb-2020 17:45	18-Feb-2020 18:00	18-Feb-2020 18:10	19-Feb-2020 11:40	19-Feb-2020 11:45
Compound	CAS Number	LOR	Unit	EP2001971-031	EP2001971-032	EP2001971-033	EP2001971-034	EP2001971-035
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<5	6
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<5	<5
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<5	<5
Phenanthrene	85-01-8	4	µg/kg	12	10	<4	19	8
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	<5	<5
Fluoranthene	206-44-0	4	µg/kg	16	11	4	25	18
Pyrene	129-00-0	4	µg/kg	16	9	5	21	16
Benz(a)anthracene	56-55-3	4	µg/kg	8	<4	<4	11	9
Chrysene	218-01-9	4	µg/kg	6	<4	<4	9	8
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	10	5	<4	15	10
Benzo(k)fluoranthene	207-08-9	4	µg/kg	5	<4	<4	10	6
Benzo(e)pyrene	192-97-2	4	µg/kg	6	<4	<4	8	7
Benzo(a)pyrene	50-32-8	4	µg/kg	8	<4	<4	10	8
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<5	<5
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	5	<4	<4	8	5
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<5	<5
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	8	7
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	98	41	9	167	131
Benzo(a)pyrene TEQ (zero)		4	µg/kg	10	<4	<4	14	11
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	13	5	5	16	13
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	15	10	10	18	15
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	86.4	89.2	97.0	91.6	76.3
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	78.9	85.4	78.7	77.2	86.7
Anthracene-d10	1719-06-8	10	%	72.2	75.0	72.2	85.6	74.5
4-Terphenyl-d14	1718-51-0	10	%	88.3	89.3	86.2	73.4	96.2

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH10-3	YM1-1	YM1-2	YM1-3	TB1-1
	Clie	ent sampli	ng date / time	19-Feb-2020 11:50	18-Feb-2020 12:00	18-Feb-2020 12:10	18-Feb-2020 12:15	18-Feb-2020 13:00
Compound	CAS Number	LOR	Unit	EP2001971-036	EP2001971-037	EP2001971-038	EP2001971-039	EP2001971-040
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	55.8	39.1	31.7	29.0	29.6
EA150: Particle Sizing								
Clay (<4 μm)		1	%	18	17	13	10	6
Silt (4-62 µm)		1	%	22	17	4	10	4
Fine Sand (62-250 μm)		1	%	47	24	23	30	59
Medium Sand (250-500 µm)		1	%	8	7	9	15	13
Coarse Sand (500-2000 μm)		1	%	4	9	15	21	15
Gravel (2000-10000 μm)		1	%	1	27	36	14	4
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.33	2.65	2.69	2.69	2.66
EG005(ED093)-SD: Total Metals in Sec	liments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1260	2920	2010	1880	590
Iron	7439-89-6	50	mg/kg	3480	7180	4980	3780	1120
Vanadium	7440-62-2	2	mg/kg	10	18	10	11	4
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	6.12	5.63	4.56	3.46	2.62
Cadmium	7440-43-9	0.1	mg/kg	0.4	0.2	0.1	0.1	0.1
Copper	7440-50-8	1.0	mg/kg	62.6	116	162	43.7	7.6
Lead	7439-92-1	1.0	mg/kg	12.9	32.6	70.4	11.8	5.8
Manganese	7439-96-5	10	mg/kg	30	46	40	28	23
Nickel	7440-02-0	1.0	mg/kg	3.3	4.8	3.1	2.6	1.0
Silver	7440-22-4	0.1	mg/kg	0.2	0.1	<0.1	<0.1	<0.1
Zinc	7440-66-6	1.0	mg/kg	113	113	53.5	53.9	21.6
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.3	5.0	3.8	3.6	1.8
EG035T: Total Recoverable Mercury b	ov FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.14	0.08	0.05	0.03
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	2.34	0.96	0.68	0.43	0.44
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	1.1	73.5	51.5	19.8	<0.5
EP132B: Polynuclear Aromatic Hydrod		0.0	gog					0.0
Naphthalene	91-20-3	5	µg/kg	22	15	11	7	9
2-Methylnaphthalene	91-20-3	5	μg/kg μg/kg	<5	<5	<5	<5	9 <5
z-mearymaphanaiene	91-07-0	5	P9/N9	-0	10		-0	<u>ت</u>

Page : 19 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH10-3	YM1-1	YM1-2	YM1-3	TB1-1
	Cli	ent sampli	ng date / time	19-Feb-2020 11:50	18-Feb-2020 12:00	18-Feb-2020 12:10	18-Feb-2020 12:15	18-Feb-2020 13:00
Compound	CAS Number	LOR	Unit	EP2001971-036	EP2001971-037	EP2001971-038	EP2001971-039	EP2001971-040
			-	Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	6	14	9	6	10
Acenaphthene	83-32-9	4	µg/kg	<5	14	4	<4	<4
Fluorene	86-73-7	4	µg/kg	<5	9	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	10	79	26	42	10
Anthracene	120-12-7	4	µg/kg	<5	20	9	10	12
Fluoranthene	206-44-0	4	µg/kg	15	180	79	100	56
Pyrene	129-00-0	4	µg/kg	14	160	70	86	50
Benz(a)anthracene	56-55-3	4	µg/kg	7	94	48	55	36
Chrysene	218-01-9	4	µg/kg	6	81	37	40	24
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	11	125	61	70	40
Benzo(k)fluoranthene	207-08-9	4	µg/kg	6	58	30	29	20
Benzo(e)pyrene	192-97-2	4	µg/kg	6	57	29	32	18
Benzo(a)pyrene	50-32-8	4	µg/kg	8	94	46	53	39
Perylene	198-55-0	4	µg/kg	<5	21	10	13	9
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	5	59	30	31	19
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<5	17	8	8	4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<5	51	25	26	17
Coronene	191-07-1	5	µg/kg	<5	9	<5	<5	<5
Sum of PAHs		4	µg/kg	116	1160	532	608	373
Benzo(a)pyrene TEQ (zero)		4	µg/kg	10	145	71	80	55
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	13	145	71	80	55
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	15	145	71	80	55
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	70.6	75.8	94.9	108	106
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	97.9	77.5	89.7	87.3	76.4
Anthracene-d10	1719-06-8	10	%	76.4	75.3	79.7	81.1	71.5
4-Terphenyl-d14	1718-51-0	10	%	93.9	101	93.8	102	78.4

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TB1-2	TB1-3	CS1-1	CS1-2	CS1-3
	Clie	ent sampli	ng date / time	18-Feb-2020 13:05	18-Feb-2020 13:10	18-Feb-2020 01:50	18-Feb-2020 15:10	18-Feb-2020 15:15
Compound	CAS Number	LOR	Unit	EP2001971-041	EP2001971-042	EP2001971-043	EP2001971-044	EP2001971-045
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	31.8	30.2	27.4	29.0	26.5
EA150: Particle Sizing								
Clay (<4 µm)		1	%	4	3	<1	1	2
Silt (4-62 μm)		1	%	6	5	<1	1	<1
Fine Sand (62-250 μm)		1	%	55	62	11	4	9
Medium Sand (250-500 μm)		1	%	9	11	56	46	57
Coarse Sand (500-2000 μm)		1	%	20	14	27	48	29
Gravel (2000-10000 μm)		1	%	6	5	6	1	4
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.65	2.44	2.53	2.45	2.51
EG005(ED093)-SD: Total Metals in Sec	diments by ICP-AFS							
Aluminium	7429-90-5	50	mg/kg	500	560	420	430	400
Iron	7439-89-6	50	mg/kg	920	930	830	800	770
Vanadium	7440-62-2	2	mg/kg	3	3	4	4	4
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	2.09	2.14	2.46	2.62	2.38
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.2	0.5	0.1
Copper	7440-50-8	1.0	mg/kg	7.1	7.4	<1.0	<1.0	<1.0
Lead	7439-92-1	1.0	mg/kg	5.2	5.5	1.8	1.7	1.7
Manganese	7439-96-5	10	mg/kg	22	22	30	28	28
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Zinc	7440-66-6	1.0	mg/kg	20.4	16.8	3.7	14.1	2.7
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	1.9	1.9	1.6	1.5	1.4
EG035T: Total Recoverable Mercury I								1
Mercury	7439-97-6	0.01	mg/kg	0.02	0.05	<0.01	<0.01	<0.01
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon (TOC) In		0.02	%	0.46	0.18	0.14	0.15	0.12
		0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			vr	0.1.0	3.12
EP090: Organotin Compounds Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
-		0.5	pySn/kg	-0.0	N.0	-0.0	NU.U	-0.0
EP132B: Polynuclear Aromatic Hydro		E	uality.	42	C	~5	< ^E	-
Naphthalene	91-20-3	5	µg/kg	12	6	<5	<5	5
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	<5	<5	<5

Page : 21 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TB1-2	TB1-3	CS1-1	CS1-2	CS1-3
	Cli	ent sampli	ng date / time	18-Feb-2020 13:05	18-Feb-2020 13:10	18-Feb-2020 01:50	18-Feb-2020 15:10	18-Feb-2020 15:15
Compound	CAS Number	LOR	Unit	EP2001971-041	EP2001971-042	EP2001971-043	EP2001971-044	EP2001971-045
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<4	4
Phenanthrene	85-01-8	4	µg/kg	<10	<4	<4	<4	6
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	<4	6
Fluoranthene	206-44-0	4	µg/kg	6	4	<4	<4	10
Pyrene	129-00-0	4	µg/kg	5	12	<4	<4	12
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	<4	<4	14
Chrysene	218-01-9	4	µg/kg	<4	6	<4	<4	15
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	4	4	<4	5	17
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	<4	7	18
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	<4	<4	<4
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	4	<4	<4	<20
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	<4	<4	9
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	5	11
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	6	10
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	27	36	<4	23	137
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	4	<4	7	17
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	7	5	9	19
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	10	10	11	21
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	101	87.4	58.8	98.3	98.2
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	78.8	70.3	73.2	76.8	73.7
Anthracene-d10	1719-06-8	10	%	72.2	99.5	83.1	77.4	95.4
4-Terphenyl-d14	1718-51-0	10	%	76.3	88.0	108	92.6	91.8

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CS2-1	CS2-2	CS2-3	CH7-1	CH7-2
· · · · · · · · · · · · · · · · · · ·	Cli	ent sampli	ng date / time	18-Feb-2020 15:30	18-Feb-2020 15:35	18-Feb-2020 15:45	19-Feb-2020 10:00	19-Feb-2020 10:05
Compound	CAS Number	LOR	Unit	EP2001971-046	EP2001971-047	EP2001971-048	EP2001971-049	EP2001971-050
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	19.8	20.6	21.4	40.2	42.4
EA150: Particle Sizing								
Clay (<4 µm)		1	%	1	1	<1	18	23
Silt (4-62 µm)		1	%	1	<1	1	17	14
Fine Sand (62-250 μm)		1	%	1	3	1	47	45
Medium Sand (250-500 µm)		1	%	56	59	53	13	13
Coarse Sand (500-2000 μm)		1	%	41	35	42	5	4
Gravel (2000-10000 μm)		1	%	1	1	3	<1	<1
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55	2.62	2.62	2.59	2.44
EG005(ED093)-SD: Total Metals in Sec	liments by ICP-AES	;						
Aluminium	7429-90-5	50	mg/kg	420	460	440	1650	1660
Iron	7439-89-6	50	mg/kg	900	990	1010	4350	4440
Vanadium	7440-62-2	2	mg/kg	5	5	6	13	13
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	3.81	4.24	4.25	5.47	5.48
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.1	0.9	0.8
Copper	7440-50-8	1.0	mg/kg	<1.0	<1.0	<1.0	140	140
Lead	7439-92-1	1.0	mg/kg	1.6	1.6	1.6	25.7	28.6
Manganese	7439-96-5	10	mg/kg	31	33	38	52	50
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	3.5	3.0
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1	0.5	0.5
Zinc	7440-66-6	1.0	mg/kg	1.9	2.1	3.0	288	252
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	1.5	1.5	1.5	3.6	3.8
EG035T: Total Recoverable Mercury b								
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	0.04	0.04
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	0.11	0.12	0.11	0.94	0.76
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	2.5	2.4
-		0.0	pgoning	-0.0	-0.0	-0.0	2.0	4 . - 7
EP132B: Polynuclear Aromatic Hydrod Naphthalene		5	ug/kg	<5	<5	<5	8	7
•	91-20-3	5	µg/kg	<5	<5	<5	8 <5	<5
2-Methylnaphthalene	91-57-6	5	µg/kg	<0	<0	<0	<0	<5

Page : 23 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CS2-1	CS2-2	CS2-3	CH7-1	CH7-2
	Cli	ent sampli	ng date / time	18-Feb-2020 15:30	18-Feb-2020 15:35	18-Feb-2020 15:45	19-Feb-2020 10:00	19-Feb-2020 10:05
Compound	CAS Number	LOR	Unit	EP2001971-046	EP2001971-047	EP2001971-048	EP2001971-049	EP2001971-050
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	5	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	5	<4
Phenanthrene	85-01-8	4	µg/kg	<4	<4	<4	48	11
Anthracene	120-12-7	4	µg/kg	<4	<4	<4	7	<4
Fluoranthene	206-44-0	4	µg/kg	<4	<4	<4	97	18
Pyrene	129-00-0	4	µg/kg	<4	<4	<4	65	16
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	<4	30	9
Chrysene	218-01-9	4	µg/kg	<4	<4	<4	22	6
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	<4	31	11
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	<4	16	7
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	<4	18	7
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	<4	21	7
Perylene	198-55-0	4	µg/kg	<4	<4	<4	5	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	<4	10	5
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	<4	8	<4
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	<4	<4	<4	396	104
Benzo(a)pyrene TEQ (zero)		4	µg/kg	<4	<4	<4	30	10
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	5	5	5	32	12
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	10	10	10	34	14
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	93.8	63.8	61.4	80.8	76.7
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	71.4	72.7	70.3	88.4	81.0
Anthracene-d10	1719-06-8	10	%	73.6	76.4	87.4	82.7	71.9
4-Terphenyl-d14	1718-51-0	10	%	80.6	80.9	93.4	119	90.2

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH7-3	CH8-1	CH8-2	CH8-3	DUP-1
	Clie	ent sampli	ng date / time	19-Feb-2020 10:15	19-Feb-2020 09:20	19-Feb-2020 09:30	19-Feb-2020 09:35	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-051	EP2001971-052	EP2001971-053	EP2001971-054	EP2001971-055
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		0.1	%	41.3	38.3	37.6	38.3	42.9
EA150: Particle Sizing								
Clay (<4 µm)		1	%	16	14	14	13	
Silt (4-62 μm)		1	%	18	11	11	10	
Fine Sand (62-250 µm)		1	%	49	42	43	42	
Medium Sand (250-500 μm)		1	%	12	17	16	19	
Coarse Sand (500-2000 μm)		1	%	4	10	8	10	
Gravel (2000-10000 μm)		1	%	1	6	7	6	
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.51	2.44	2.47	2.45	
EG005(ED093)-SD: Total Metals in Se	ediments by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1950	1230	1460	1780	2020
Iron	7439-89-6	50	mg/kg	4930	3120	3250	3830	4200
Vanadium	7440-62-2	2	mg/kg	13	9	10	10	9
EG020-SD: Total Metals in Sediments	s by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.55	3.86	3.87	3.96	4.30
Cadmium	7440-43-9	0.1	mg/kg	1.0	0.6	0.6	0.7	0.2
Copper	7440-50-8	1.0	mg/kg	154	98.3	99.2	107	218
Lead	7439-92-1	1.0	mg/kg	27.4	19.3	16.5	18.6	16.4
Manganese	7439-96-5	10	mg/kg	52	36	41	37	19
Nickel	7440-02-0	1.0	mg/kg	3.2	2.4	2.5	2.8	2.8
Silver	7440-22-4	0.1	mg/kg	0.3	0.2	0.2	0.4	0.2
Zinc	7440-66-6	1.0	mg/kg	302	173	187	199	180
EG020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	4.1	3.1	3.5	3.6	4.4
EG035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.01	mg/kg	0.04	0.03	0.02	0.03	0.07
EP003: Total Organic Carbon (TOC) i								
Total Organic Carbon		0.02	%	0.71	0.72	0.58	0.60	0.97
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	1.2	2.4	1.0	1.0	15.8
-		0.0	Pacing					10.0
EP132B: Polynuclear Aromatic Hydro Naphthalene		5		6	9	6	8	8
2-Methylnaphthalene	91-20-3	5	µg/kg	<5	<5	<5	8 <5	o <5
2-methymaphthalefie	91-57-6	5	µg/kg	~ U	NU NU	~ 0	N 0	\$ 0

Page : 25 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	CH7-3	CH8-1	CH8-2	СН8-3	DUP-1
	Cli	ent sampli	ng date / time	19-Feb-2020 10:15	19-Feb-2020 09:20	19-Feb-2020 09:30	19-Feb-2020 09:35	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-051	EP2001971-052	EP2001971-053	EP2001971-054	EP2001971-055
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued							
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	5
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	22	14	12	10	27
Anthracene	120-12-7	4	µg/kg	4	<4	<4	<4	7
Fluoranthene	206-44-0	4	µg/kg	32	26	14	10	51
Pyrene	129-00-0	4	µg/kg	29	24	12	11	48
Benz(a)anthracene	56-55-3	4	µg/kg	12	13	6	4	24
Chrysene	218-01-9	4	µg/kg	10	11	5	<4	22
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	15	16	10	5	39
Benzo(k)fluoranthene	207-08-9	4	µg/kg	9	10	4	4	19
Benzo(e)pyrene	192-97-2	4	µg/kg	10	11	5	<4	23
Benzo(a)pyrene	50-32-8	4	µg/kg	10	11	4	<4	27
Perylene	198-55-0	4	µg/kg	<4	<4	<4	<4	6
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	6	7	<4	<4	19
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<4	4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	5	<4	<4	13
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	µg/kg	165	157	78	52	342
Benzo(a)pyrene TEQ (zero)		4	µg/kg	14	16	6	<4	41
Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	16	18	8	6	41
Benzo(a)pyrene TEQ (LOR)		4	µg/kg	18	20	10	10	41
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	50.7	70.3	44.0	66.9	40.5
EP132T: Base/Neutral Extractable S	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	74.3	80.8	79.2	78.3	96.5
Anthracene-d10	1719-06-8	10	%	70.3	74.6	71.8	82.0	86.0
4-Terphenyl-d14	1718-51-0	10	%	79.5	90.8	86.7	90.6	121

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	DUP-2	DUP-3	DUP-4	DUP-5	TRIP-P1
	Cli	ient samplii	ng date / time	18-Feb-2020 00:00	19-Feb-2020 00:00	20-Feb-2020 00:00	20-Feb-2020 00:00	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-056	EP2001971-057	EP2001971-058	EP2001971-059	EP2001971-060
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 1	05-110°C)							
Moisture Content		0.1	%	38.0	42.6	45.3	32.8	36.6
G005(ED093)-SD: Total Metals in S	ediments by ICP-AES	3						
Aluminium	7429-90-5	50	mg/kg	1730	2000	1770	250	1610
Iron	7439-89-6	50	mg/kg	4680	4780	5470	430	4140
Vanadium	7440-62-2	2	mg/kg	12	14	14	<2	12
G020-SD: Total Metals in Sediment	s by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.14	5.28	6.27	1.92	4.71
Cadmium	7440-43-9	0.1	mg/kg	1.0	0.9	1.5	<0.1	0.8
Copper	7440-50-8	1.0	mg/kg	141	153	209	<1.0	124
Lead	7439-92-1	1.0	mg/kg	30.4	26.4	48.1	1.0	24.4
Manganese	7439-96-5	10	mg/kg	59	55	48	17	46
Nickel	7440-02-0	1.0	mg/kg	3.4	3.6	3.3	<1.0	3.4
Silver	7440-22-4	0.1	mg/kg	0.4	0.3	0.6	<0.1	0.3
Zinc	7440-66-6	1.0	mg/kg	299	276	472	2.5	253
G020T: Total Metals by ICP-MS								
Lithium	7439-93-2	0.1	mg/kg	3.9	4.4	4.0	2.3	3.7
G035T: Total Recoverable Mercury	/ by FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.04	0.04	0.06	<0.01	0.04
P003: Total Organic Carbon (TOC)	in Soil							
Total Organic Carbon		0.02	%	0.72	0.99	1.17	0.23	0.71
P090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	2.3	2.4	3.2	<0.5	2.8
P132B: Polynuclear Aromatic Hydr	ocarbons							
Naphthalene	91-20-3	5	µg/kg	8	10	10	5	7
2-Methylnaphthalene	91-57-6	5	µg/kg	6	<5	6	<5	<5
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	µg/kg	<4	<4	<4	<4	<4
Phenanthrene	85-01-8	4	µg/kg	12	15	22	<4	20
Anthracene	120-12-7	4	µg/kg	<4	<4	5	<4	<4
Fluoranthene	206-44-0	4	µg/kg	19	24	35	<4	23
Pyrene	129-00-0	4	µg/kg	22	24	32	<4	29
Benz(a)anthracene	56-55-3	4	µg/kg	11	13	16	<4	12
Chrysene	218-01-9	4	µg/kg	9	11	13	<4	9

Page : 27 of 33 Work Order : EP2001971 Client : WA MARINE PTY LTD Project : 18WAU-0004 Geraldton Port Compliance Sediment Sampling 2020

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	DUP-2	DUP-3	DUP-4	DUP-5	TRIP-P1
	Cli	ent sampli	ng date / time	18-Feb-2020 00:00	19-Feb-2020 00:00	20-Feb-2020 00:00	20-Feb-2020 00:00	18-Feb-2020 00:00
Compound	CAS Number	LOR	Unit	EP2001971-056	EP2001971-057	EP2001971-058	EP2001971-059	EP2001971-060
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	drocarbons - Continued							
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	15	26	23	<4	15
Benzo(k)fluoranthene	207-08-9	4	µg/kg	8	13	9	<4	7
Benzo(e)pyrene	192-97-2	4	µg/kg	11	18	14	<4	11
Benzo(a)pyrene	50-32-8	4	µg/kg	12	16	14	<4	10
Perylene	198-55-0	4	µg/kg	<4	5	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	7	13	10	<4	6
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	5	9	6	<4	<4
Coronene	191-07-1	5	µg/kg	<5	<5	<5	<5	<5
^ Sum of PAHs		4	µg/kg	145	197	215	5	149
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	16	22	20	<4	14
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	18	24	22	5	16
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	20	26	24	10	18
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	71.2	65.0	53.0	91.4	59.7
EP132T: Base/Neutral Extractable \$	Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	91.1	89.9	88.1	89.3	86.2
Anthracene-d10	1719-06-8	10	%	80.7	80.8	78.0	90.2	79.0
4-Terphenyl-d14	1718-51-0	10	%	101	108	94.7	112	71.6

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TRIP-P2	TRIP-P3	 	
	Cli	ient sampli	ng date / time	19-Feb-2020 00:00	20-Feb-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EP2001971-061	EP2001971-062	 	
				Result	Result	 	
EA055: Moisture Content (Dried @ 10)5-110°C)						
Moisture Content		0.1	%	52.3	41.1	 	
EG005(ED093)-SD: Total Metals in Se	diments by ICP-AES	\$					
Aluminium	7429-90-5	50	mg/kg	2330	1310	 	
Iron	7439-89-6	50	mg/kg	6220	4370	 	
Vanadium	7440-62-2	2	mg/kg	17	13	 	
EG020-SD: Total Metals in Sediments	by ICPMS						
Arsenic	7440-38-2	1.00	mg/kg	7.20	5.55	 	
Cadmium	7440-43-9	0.1	mg/kg	1.0	1.3	 	
Copper	7440-50-8	1.0	mg/kg	186	166	 	
Lead	7439-92-1	1.0	mg/kg	35.4	44.4	 	
Manganese	7439-96-5	10	mg/kg	54	49	 	
Nickel	7440-02-0	1.0	mg/kg	4.4	2.8	 	
Silver	7440-22-4	0.1	mg/kg	0.5	0.4	 	
Zinc	7440-66-6	1.0	mg/kg	332	392	 	
EG020T: Total Metals by ICP-MS							
Lithium	7439-93-2	0.1	mg/kg	5.2	3.4	 	
EG035T: Total Recoverable Mercury	by FIMS						
Mercury	7439-97-6	0.01	mg/kg	0.07	0.05	 	
EP003: Total Organic Carbon (TOC) i	n Soil						
Total Organic Carbon		0.02	%	1.63	0.83	 	
EP090: Organotin Compounds							
Tributyltin	56573-85-4	0.5	µgSn/kg	1.3	4.6	 	
EP132B: Polynuclear Aromatic Hydro	ocarbons						
Naphthalene	91-20-3	5	µg/kg	15	7	 	
2-Methylnaphthalene	91-57-6	5	µg/kg	6	<5	 	
Acenaphthylene	208-96-8	4	µg/kg	<5	<4	 	
Acenaphthene	83-32-9	4	µg/kg	<5	<4	 	
Fluorene	86-73-7	4	µg/kg	<5	<4	 	
Phenanthrene	85-01-8	4	µg/kg	14	11	 	
Anthracene	120-12-7	4	µg/kg	<5	<4	 	
Fluoranthene	206-44-0	4	µg/kg	29	<20	 	
Pyrene	129-00-0	4	µg/kg	28	14	 	
Benz(a)anthracene	56-55-3	4	µg/kg	16	7	 	
Chrysene	218-01-9	4	µg/kg	11	5	 	

Sub-Matrix: MARINE SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TRIP-P2	TRIP-P3	 	
(Cli	ient samplii	ng date / time	19-Feb-2020 00:00	20-Feb-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EP2001971-061	EP2001971-062	 	
				Result	Result	 	
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	22	10	 	
Benzo(k)fluoranthene	207-08-9	4	µg/kg	11	4	 	
Benzo(e)pyrene	192-97-2	4	µg/kg	15	6	 	
Benzo(a)pyrene	50-32-8	4	µg/kg	14	6	 	
Perylene	198-55-0	4	µg/kg	<5	<4	 	
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	10	4	 	
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<5	<4	 	
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	7	<4	 	
Coronene	191-07-1	5	µg/kg	<5	<5	 	
^ Sum of PAHs		4	µg/kg	198	74	 	
^ Benzo(a)pyrene TEQ (zero)		4	µg/kg	20	8	 	
^ Benzo(a)pyrene TEQ (half LOR)		4	µg/kg	22	10	 	
^ Benzo(a)pyrene TEQ (LOR)		4	µg/kg	24	12	 	
EP090S: Organotin Surrogate							
Tripropyltin		0.5	%	62.7	95.7	 	
EP132T: Base/Neutral Extractable \$	Surrogates						
2-Fluorobiphenyl	321-60-8	10	%	87.1	72.4	 	
Anthracene-d10	1719-06-8	10	%	75.6	74.2	 	
4-Terphenyl-d14	1718-51-0	10	%	92.1	89.3	 	

Sub-Matrix: SEDIMENT (Matrix: SOIL)	Client sample ID		Elutriate Water	 	 	
	ient sampliı	ng date / time	20-Feb-2020 09:30	 	 	
Compound	CAS Number	LOR	Unit	EP2001971-064	 	
				Result	 	
EN68: Seawater Elutriate Testing Proce	edure					
Seawater Sampling Date		-	-	27/02/2020	 	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RINSB	 	
	C	lient sampli	ng date / time	19-Feb-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EP2001971-063	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Silver	7440-22-4	0.001	mg/L	<0.001	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG035T: Total Recoverable Merci	ury by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
^ Sum of polycyclic aromatic hydroca	arbons	0.5	μg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	
EP075(SIM)S: Phenolic Compound	d Surrogates					
Phenol-d6	13127-88-3	1.0	%	23.9	 	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RINSB					
	Cli	ent sampli	ng date / time	19-Feb-2020 00:00					
Compound	CAS Number	LOR	Unit	EP2001971-063					
				Result					
EP075(SIM)S: Phenolic Compound Sur	EP075(SIM)S: Phenolic Compound Surrogates - Continued								
2-Chlorophenol-D4	93951-73-6	1.0	%	60.6					
2.4.6-Tribromophenol	118-79-6	1.0	%	69.6					
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	1.0	%	70.6					
Anthracene-d10	1719-06-8	1.0	%	93.9					
4-Terphenyl-d14	1718-51-0	1.0	%	86.4					

Surrogate Control Limits

Sub-Matrix: ELUTRIATE	Г	Recovery	l imits (%)
	CAS Number	Low	High
EP090S: Organotin Surrogate	CAS Number		5
Tripropyltin		24	116
Sub-Matrix: MARINE SEDIMENT	Γ	Recovery	Limits (%)
Compound	CAS Number	Low	High
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP132T: Base/Neutral Extractable Surrogates			
2-Fluorobiphenyl	321-60-8	70	130
Anthracene-d10	1719-06-8	70	130
4-Terphenyl-d14	1718-51-0	70	130
Sub-Matrix: WATER	Γ	Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	67
2-Chlorophenol-D4	93951-73-6	29	120
2.4.6-Tribromophenol	118-79-6	10	131
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	34	131
Anthracene-d10	1719-06-8	43	126
4-Terphenyl-d14	1718-51-0	41	142

QUALITY CONTROL REPORT

Work Order	: EP2103295	Page	: 1 of 3
Client	: WA MARINE PTY LTD	Laboratory	: Environmental Division Perth
Contact	: Russell Stevens	Contact	: Nick Courts
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 26 Rigali Way Wangara WA Australia 6065
Telephone	·	Telephone	: +61-8-9406 1301
Project	: 18WAU-0004 Geraldton Port Sediment Sampling 2021	Date Samples Received	: 25-Mar-2021
Order number	:	Date Analysis Commenced	: 30-Mar-2021
C-O-C number	:	Issue Date	: 01-Apr-2021
Sampler	: Russell Stevens		Iac-MRA NAT
Site	:		
Quote number	: EN/222		Accreditation No. 8
No. of samples received	: 1		Accredited for compliance wi
No. of samples analysed	: 1		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Position Accreditation Category

Chris Lemaitre

Laboratory Manager (Perth)

Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL	p-Matrix: SOIL					Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 3593554)							
EP2103295-001	SPLIT-S4	EA055: Moisture Content		0.1	%	37.2	38.2	2.63	0% - 20%
EK055: Ammonia as	N (QC Lot: 3593775	5)							
EP2103283-002	Anonymous	EK055: Ammonia as N	7664-41-7	20	mg/kg	20	40	58.2	No Limit
EK057G: Nitrite as	N by Discrete Analys	er (QC Lot: 3593520)							
EP2103295-001	SPLIT-S4	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 3593521)							
EP2103295-001	SPLIT-S4	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK061G: Total Kjelo	lahl Nitrogen By Disc	crete Analyser (QC Lot: 3592282)							
EP2102975-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	8430	9720	14.2	0% - 20%
EK067G: Total Phos	sphorus as P by Disc	rete Analyser (QC Lot: 3592281)							
EP2102975-001	Anonymous	EK067G: Total Phosphorus as P		2	mg/kg	2010	2220	9.94	0% - 20%
EK071G: Reactive F	Phosphorus as P by o	liscrete analyser (QC Lot: 3593522)							
EP2103295-001	SPLIT-S4	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.2	0.2	0.00	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK055: Ammonia as N (QCLot: 3593775)								
EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	50 mg/kg	93.2	70.0	116
EK057G: Nitrite as N by Discrete Analyser (QC	Lot: 3593520)							
EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	106	94.7	106
EK059G: Nitrite plus Nitrate as N (NOx) by Dis	crete Analyser (QCLot: 3593	3521)						
EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	95.2	89.8	109
EK061G: Total Kjeldahl Nitrogen By Discrete A	nalyser (QCLot: 3592282)							
EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	<20	1000 mg/kg	84.2	78.0	112
				<20	100 mg/kg	70.3	70.0	130
EK067G: Total Phosphorus as P by Discrete Ar	alyser (QCLot: 3592281)							
EK067G: Total Phosphorus as P		2	mg/kg	<2	440 mg/kg	83.4	78.0	108
				<2	44 mg/kg	86.4	70.0	130
EK071G: Reactive Phosphorus as P by discrete	analyser (QCLot: 3593522)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	2.5 mg/kg	99.9	89.7	108

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Ī	Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable L	.imits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK055: Ammonia a	as N (QCLot: 3593775)							
EP2103295-001	SPLIT-S4	EK055: Ammonia as N	7664-41-7	50 mg/kg	91.4	70.0	130	
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCLot: 3592282)							
EP2102975-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	105	70.0	130	
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 3592281)							
EP2102975-002	Anonymous	EK067G: Total Phosphorus as P		100 mg/kg	93.9	70.0	130	
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 3593522)						
EP2103349-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	2.5 mg/kg	96.6	70.0	130	

Appendix E Sample photographs and descriptions

 Table E-1
 Description of the characteristics of sediment samples taken from the navigation channel 'Probably Clean' sediments.

Location	Depth Interval (m)	Sediment Description	Photograph
NC1	0-0.5	Soft grey/yellow medium to fine sand – some organic matter at surface 1cm.	
NC2	0-0.5	Soft grey/yellow medium to fine sand – some organic matter at surface 1cm	NC2-S -S D'EL: All Organiz

Location	Depth Interval (m)	Sediment Description	Photograph
NC3	0-0.5	Loose grey/yellow medium to fine sand – some organic matter at surface 1cm	T. C. P. Z. P. D.
NC4	0-0.5	Dense grey/yellow medium to fine sand – some organic matter at surface 1cm	
NC5	0-0.5	Soft grey/yellow medium to fine sand – some organic matter at surface 1cm	the second

Location	Depth Interval (m)	Sediment Description	Photograph
NC6	0-0.5	Soft yellow/grey medium to fine sand – some organic matter at surface 1cm	NC6 NC6 NC1: Al Oraita
NC7	0-0.5	Soft yellow/grey medium to fine sand – some organic matter at surface 1cm	I-o-b-19I-
NC8	0-0.5	Soft yellow/grey medium to fine sand – some organic matter at surface 1cm	IS F: IS

Location	Depth Interval (m)	Sediment Description	Photograph
NC9	0-0.5	Soft yellow/grey medium to fine sand – some organic matter at surface 1cm	15-5-7 NCP BOIL: AND DRIVE
NC10	0-0.5	Soft yellow/grey medium to fine sand – some organic matter at surface 1cm	NCIO NCIO
NC11	0-0.5	Soft grey/yellow medium to fine sand – some organic matter at surface 1cm.	

Location	Depth Interval (m)	Sediment Description	Photograph
NC12	0-0.5	Soft grey/yellow medium to fine sand – some organic matter at surface 1cm.	
NC13	0-0.5	Soft yellow/grey medium to fine sand – some organic matter at surface 1cm.	
NC14	0-0.5	Soft grey/yellow medium to fine sand – some organic matter at surface 1cm.	

Location	Depth Interval (m)	Sediment Description	Photograph
NC17	0-0.5	Soft, Grey medium sand – no organic matter or shell fragments present. Presence of an odour	
NC18	0-0.5	Dense, Grey medium sand – no organic matter or shell fragments present. Presence of an odour	<image/>
NC19	0-0.5	Soft, Grey medium sand – no organic matter or shell fragments present. Presence of an odour	<image/>

Table E-2 Description of the characteristics of sediment samples taken from the inner harbour and Berth 6/7 berth pocket 'Suspect' sediments.

Location	Depth Interval (m)	Sediment Description	Photograph
CH7	0-0.5	Soft, fine silty sand – grey, organic smell. Foreign material and shell grit present.	chi2-1 cy solic all organs
CH8-S	0-0.5	Soft, fine silty sand – grey/brown, organic smell. Foreign material and a medium level of shell grit present.	

Location	Depth Interval (m)	Sediment Description	Photograph
CH8-D	0.5-0.8	Soft, fine silty sand – grey, organic smell. Foreign material and shell grit present.	THE-IE-LO-3 CHS-D SOIL: AIL ORDE Keep Chi
CH10	0-0.5	Soft, medium fine sand – grey/brown, with some fine shell grit	
CH11	0-0.5	Soft, fine silty sand – grey/brown with some foreign material and shell fragments.	

Location	Depth Interval (m)	Sediment Description	Photograph
CH12-S	0-0.5	Soft, fine silty sand – grey/brown, with some foreign material and shell fragments	Image: Sector
CH12-D	0.5-0.7	Soft, fine silty sand – grey, with some foreign material and shell fragments	Pétil ézè Pétil ézè Chil2-D Dir Kil Organis
CH13	0-0.5	Soft, fine silty sand – grey with some shell fragments	

Location	Depth Interval (m)	Sediment Description	Photograph
CH14-S	0-0.5	Dense, fine silty sand – grey with some foreign material and shell fragments	KG19 17:00 CHIL4 - S DILL AIL OFFICE
CH14-D	0.5-0.9	Dense, fine silty sand – grey with some foreign material and shell fragments	
CH15	0-0.5	Soft, fine silty sand – dark grey, with some foreign material and shell fragments	It 6-19 II: 30 CHIS DIL AUGUST

Location	Depth Interval (m)	Sediment Description	Photograph
CH16	0-0.5	Soft, Fine silty sand – Dark grey, no foreign material or shell fragments	The second secon
CH17	0-0.5	Soft, Medium fine sand – Grey, no foreign material or shell fragments	<image/>
CH18	0-0.5	Soft, Medium fine sand – Grey, no foreign material or shell fragments	<image/>

Location	Depth Interval (m)	Sediment Description	Photograph
CH19	0-0.5	Soft, Medium fine sand – Grey, no foreign material or shell fragments	

Table E-3 Description of the characteristics of sediment samples taken from the Berth 3, 4 and 5 berth pocket 'Probably Contaminated' sediments.

Location	Depth Interval (m)	Sediment Description	Photograph
CH1	0-0.5	Soft, medium fine sand – grey/brown, with high levels of foreign material and some shell grit present.	teres are a construction of the teres of
CH2	0-0.5	Soft, fine silty sand – dark grey, with medium levels of foreign material and some shell grit present.	

Location	Depth Interval (m)	Sediment Description	Photograph
CH3	0-0.5	Soft, medium fine sand – dark grey, with a medium level of foreign material and some shell grit present.	
CH4	0-0.5	Soft, medium fine sand – grey, with some foreign material and shell grit present.	
CH5	0-0.5	Soft, medium fine sand – grey, with some foreign material and a medium level of shell grit and fragments present.	c·19 li:30 HS-1 SOIL: All OTT

Location	Depth Interval (m)	Sediment Description	Photograph
CH6	0-0.5	Soft, fine sand – grey, with some foreign material and shell grit present.	- l'1 n: ce 6-l c2 bil: All Organis Rep Charles

Table E-4 Description of the characteristics of sediment samples taken from the Nearshore Material Placement Areas.

Location	Depth Interval (m)	Sediment Description	Photograph
NPA1	0-0.5	Soft, medium fine sand – brown, with some shell grit present.	T2:5:21 AR BO MPAI-A D2A DCI: Organization

Location	Depth Interval (m)	Sediment Description	Photograph
NPA2	0-0.5	Soft, medium fine sand – brown, with some shell grit present.	Teres and the
NPA3	0-0.5	Soft, medium fine sand – brown, with some shell grit present.	IZ-SF-ZE MAZ DC-M DC-
NPA4	0-0.5	Soft, medium fine sand – brown, with some shell grit present.	esered and the esered

Location	Depth Interval (m)	Sediment Description	Photograph
NPA5	0-0.5	Soft, medium fine sand – brown, with some shell grit present.	No Photo Available

Appendix F Field QA/QC Results

Table F-1	Relative Standard Deviation (RSD) for Metals	, TBTs and TOC in field split inter-labora	atory sediment samples
-----------	--	--	------------------------

Sample ID	AI	As	Cd	Cu	Pb	Mn	Ni	Zn	Ag	Fe	V	Hg	TBT	тос
Units						mg	ı/kg						ugSn/kg	%
LoR	1	0.1	0.1	1	1	1	1	1	1	1	2	0.02		
CH8-S	1900	3.9	0.6	110	17	34	3	170	0.5	5200	12	0.06	2.8	1.2
SPLIT-1 (P)	1400	3.7	0.5	86	13	33	2	130	0.5	3900	9	0.04	-	-
SPLIT-1 (S)	1460	3.74	0.5	74.8	13.6	37	2.3	147	0.2	3170	9.5	0.02	<0.5	<1
RSD (%)	17%	3%	11%	20%	15%	6%	28%	1 3 %	43%	25%	16%	50%	167%	82 %
CH2	2400.00	6	1.10	200.00	31	47.00	4.00	360.00	0.50	8100.00	17.00	0.09	-	-
SPLIT-2 (P)	3100	6.9	1.3	200	31	50	5	350	0.5	8400	18	0.09	-	-
SPLIT-2 (S)	2120	6.22	1.2	190	36.1	57	4.8	377	0.6	6020	16.8	0.05	-	-
RSD (%)	20%	7%	8%	3 %	9 %	10%	16%	4%	11%	17%	4%	30%		
СНЗ	2800	7.1	3.4	340	65	59	5	950	1	9600	19	0.11	12	1.9
SPLIT-3 (P)	2900	6.1	3.5	320	65	50	4	940	0.5	8700	18	0.1	-	-
SPLIT-3 (S)	2160	6.33	3.8	279	76.8	52	4.2	941	1	6290	16.8	0.06	2.2	1.11
RSD (%)	15%	8%	6%	10%	10%	9 %	16%	1%	35%	21%	6%	29 %	1 38 %	52%

(RSD>50%).

Table F-2 Relative Standard Deviation (RSD) for nutrients in field split inter-laboratory sediment samples

Sample ID	ТР	TN	TKN	NOx
Units		n	ng/kg	
LoR	1	10	10	1
CH3-1	490	1400	1400	<1
SPLIT-P4	390	2,000	2,000	<1
SPLIT-S4	378	660	660	<1
18\//ALL_00// / R190125	Midwest Ports Au	thority		

Sample ID	ТР	TN	TKN	NOx
RSD (%)	15%	50%	50%	0%
(<i>RSD>35%</i>).				

Table F-3	Relative Standard Deviation	(RSD) for Metals in field triplicate sediment samples
-----------	-----------------------------	------	---

Sample ID	AI	As	Cd	Cu	Pb	Mn	Ni	Zn	Ag	Fe	V	Hg
Units						mg	ı/kg					
LoR	1	0.1	0.1	1	1	1	1	1	1	1	2	0.02
CH1-1	2000	6.3	0.80	99	16	59	3.0	180	0.5	5400	14	0.07
CH1-2	2400	6.6	1.30	120	19	53	4.0	200	0.5	5900	16	0.03
CH1-3	2500	6.3	0.8	110	21	57	4	190	0.5	6000	15	0.06
RSD (%)	12%	3%	30%	10%	13%	5%	16%	5%	0%	6%	7%	39 %
CH5-1	1200	4.1	0.6	81	15	35	2	210	0.5	4900	10	0.04
CH5-2	1300	4.1	0.6	83	15	36	2	230	0.5	5300	11	0.04
CH5-3	1100	4.6	0.50	67	12	33	2	140	0.5	4300	9	0.03
RSD (%)	8%	7%	10%	11%	12%	4%	0%	24%	0%	10%	10%	16%
CH10-1	1500	4.1	0.4	53	8	30	3	83	0.5	4500	9	0.03
CH10-2	1700	4.9	0.5	61	9	29	3	94	0.5	5100	10	0.03

18WAU-004 / R190125

Midwest Ports Authority Geraldton Port Sediment Sampling Characterisation Assessment - 2019

Sample ID	AI	As	Cd	Cu	Pb	Mn	Ni	Zn	Ag	Fe	V	Hg
CH10-3	1600	3.8	0.4	54	8	28	2	87	0.5	4600	9	0.04
RSD (%)	6%	13%	13%	8%	7%	3%	22%	6%	0%	7%	6%	17%
CH17-1	420	2.8	0.1	12	1	25	1	15	0.05	1100	3	0.005
CH17-2	420	3.1	0.1	12	2	26	1	14	0.05	1100	3	0.005
CH17-3	410	6.0	0.2	14	1	27	0.5	16	0.05	1200	4	0.005
RSD (%)	1%	45 %	43%	9%	43%	4%	0%	7%	0%	5%	17%	0%

(*RSD*>50%).

Table F-4 Relative Standard Deviation (RSD) for nutrients in porewater for field triplicate sediment samples

Sample ID	ТР	TN	TKN	NOx
LoR	1	10	10	1
CH3-1	490	1400	1400	<1
CH3-2	480	2100	2100	<1
CH3-3	500	2000	2000	<0.001
RSD (%)	2%	21%	21%	86%
(<i>RSD</i> >50%).				